F. Alberto Grünbaum

Job title: 
Professor Emeritus
Bio: 

Year appointed: 1974

Year retired: 2014

Selected Publications: 

  1. Grünbaum, F. Alberto; Pacharoni, Inés; Zurrián, Ignacio; Bispectrality and time-band limiting: matrix-valued polynomials. Int. Math. Res. Not. IMRN 2020, no. 13, 4016–4036.
  2. Grünbaum, F. A.; Lardizabal, C. F.; Velázquez, L. Quantum Markov chains: recurrence, Schur functions and splitting rules. Ann. Henri Poincaré 21 (2020), no. 1, 189–239. 81P47 (81S22)
  3. Casper, W. Riley; Grünbaum, F. Alberto; Yakimov, M.; Zurrián, I, Reflective prolate-spheroidal operators and the KP/KdV equations. PNAS September 10, 2019 116 (37) 18310-18315.
  4. Grünbaum, F. Alberto; Vinet, Luc; Zhedanov, Alexei Algebraic Heun operator and band-time limiting. Comm. Math. Phys. 364 (2018), no. 3, 1041–1068.
  5. Grünbaum, F. Alberto; de la Iglesia, Manuel D. Stochastic LU factorizations, Darboux transformations and urn models. J. Appl. Probab. 55 (2018), no. 3, 862–886. 60J10 (33C45 42C05)
  6. Grünbaum, F. A.; Velázquez, L. A generalization of Schur functions: applications to Nevanlinna functions, orthogonal polynomials, random walks and unitary and open quantum walks. Adv. Math. 326 (2018), 352–464
  7. Cedzich,C.; Geib, T.; Grünbaum, F. A.; Stahl, C.; Velázquez, L.; Werner, A. H.;Werner, R. F. The topological classification of one-dimensional symmetric quantum walks. Ann. Henri Poincaré 19 (2018), no. 2, 325–383.     
  8. Grünbaum, Francisco Alberto; Velázquez, Luis The CMV bispectral problem. Int. Math. Res. Not. IMRN 2017, no. 19, 5833–5860.  
  9. Castro, M.; Grünbaum, F. A. Time-and-band limiting for matrix orthogonal polynomials of Jacobi type. Random Matrices Theory Appl. 6   (2017), no.4, 1740001, 12 pp.    
  10. Grünbaum, F. A.; Pacharoni, I.; Zurrián, I. Time and band limiting for matrix valued functions: an integral and a commuting differential  operator. Inverse Problems 33 (2017), no. 2, 025005, 14 pp. 
  11. Grünbaum, F. Alberto; Vinet, Luc; Zhedanov, Alexei Tridiagonalization and the Heun equation. J. Math. Phys. 58 (2017), no. 3, 031703,  12 pp. 
  12. Cedzich, C.; Grünbaum, F. A.; Stahl, C.; Velázquez, L.; Werner, A. H.; Werner, R. F. Bulk-edge correspondence of one-dimensional quantum walks. J. Phys. A 49 (2016), no. 21, 21LT01, 12 pp. 81Q35
  13. Cedzich,C.; Grünbaum,  F. A.; Velázquez, L.; Werner, A. H.; Werner, R. F. A quantum dynamical approach to matrix Khrushchev's formulas. Comm. Pure Appl. Math. 69 (2016), no. 5, 909–957.
  14. Grünbaum, F. Alberto; Pacharoni, Inés; Zurrián, Ignacio Nahuel Time and band limiting for matrix valued functions, an example. SIGMA Symmetry Integrability Geom. Methods Appl. 11 (2015), Paper 044, 14 pp. 42C10  
  15. Grünbaum, F. Alberto Some noncommutative matrix algebras arising in the bispectral problem. SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), Paper 078, 9 pp.   
  16. J. Bourgain, F.A. Grünbaum, L. Velázquez and J. Wilkening; Quantum recurrence of a subspace and operator valued Schur functions, (on line already)  in Comm. Math. Phys. (2014)  arXiv: 1302.7286 v1.
  17. F.A. Grünbaum, L. Velázquez, A. Werner and R. Werner; Recurrence for discrete time unitary evolutions, Comm. Math. Phys. (320) 2013
  18. F.A. Grünbaum, L. Velázquez, The quantum walk of F. Riesz, Foundations of computational mathematics, Budapest 2011, 93-112, London Math. Soc. Lecture Note Ser. 403, Cambridge Univ. Press, Cambridge, 2013.
  19. M.J. Cantero, F.A. Grünbaum, L. Moral, L. Velázquez, Matrix valued Szegő polynomials and quantum random walks, Comm. Pure Appl. Math. 63 (2010) 464-507
  20. Grünbaum, F. Alberto (2010). An urn model associated with Jacobi polynomials. Commun. Appl. Math. Comput. Sci. 5 55-63. [MR] [GS?]
  21. Grünbaum, F. Alberto (2009). Block tridiagonal matrices and a beefed-up version of the Ehrenfest urn model. In Modern analysis and applications. The Mark Krein Centenary Conference. Vol. 1: Operator theory and related topics Oper. Theory Adv. Appl. 190 267-277 Birkhäuser Verlag Basel. [link] [MR] [GS?]
  22. Grünbaum, F. Alberto (2008). Random walks and orthogonal polynomials: some challenges. In Probability, geometry and integrable systems Math. Sci. Res. Inst. Publ. 55 241-260 Cambridge Univ. Press Cambridge. [MR] [GS?]
  23. Grünbaum, F. Alberto and de la Iglesia, Manuel D. (2008). Matrix valued orthogonal polynomials arising from group representation theory and a family of quasi-birth-and-death processes. SIAM J. Matrix Anal. Appl. 30 No.2, 741-761.
Research interests: 

Analysis, Probability, Integrable systems, Medical imaging

Contact

(510) 642-5348
905 Evans Hall

Supervised Dissertations

Luisa Miranian; F. Alberto Grünbaum
PhD Thesis (Author field refers to student + advisor), 2005
Brandoch Calef; F. Alberto Grünbaum
PhD Thesis (Author field refers to student + advisor), 2002
Sarah Kathryn Patch; F. Alberto Grünbaum
PhD Thesis (Author field refers to student + advisor), 1994
Geoffrey Arthur Latham; F. Alberto Grünbaum
PhD Thesis (Author field refers to student + advisor), 1989
Jorge Passamani Zubelli; F. Alberto Grünbaum
PhD Thesis (Author field refers to student + advisor), 1989
Harold Lance Naparst; F. Alberto Grünbaum
PhD Thesis (Author field refers to student + advisor), 1988
Paul Emerson Wright; F. Alberto Grünbaum
PhD Thesis (Author field refers to student + advisor), 1988
Michael Keith Reach; F. Alberto Grünbaum
PhD Thesis (Author field refers to student + advisor), 1987
Ronald Keith Perline; F. Alberto Grünbaum
PhD Thesis (Author field refers to student + advisor), 1984
Audrey Maylene Tam; F. Alberto Grünbaum
PhD Thesis (Author field refers to student + advisor), 1982
Mark Edward Davison; F. Alberto Grünbaum
PhD Thesis (Author field refers to student + advisor), 1979
Marci Ann Perlstadt; F. Alberto Grünbaum
PhD Thesis (Author field refers to student + advisor), 1978