A polynomial-time algorithm for computing absolutely normal
numbers

Veroénica Becher Pablo Ariel Heiber Theodore A. Slaman
Universidad de Buenos Aires Universidad de Buenos Aires University of California Berkeley
vbecher@dc.uba.ar pheiber@dc.uba.ar slaman@math.berkeley.edu

March 4, 2013

Abstract

We give an algorithm to compute an absolutely normal number so that the first ¢
digits in its binary expansion are obtained in time polynomial in i; in fact, just above
quadratic. The algorithm uses combinatorial tools to control divergence from normality.
Speed of computation is achieved at the sacrifice of speed of convergence to normality.

1 Introduction

“Show me an absolutely normal number.” Emile Borel posed this problem over one hundred
years ago, but it still has no satisfactory solution. Recall that a real number is absolutely
normal if the digits in its infinite expansion in each base are distributed uniformly. One
solution to the problem would be to give an algorithm and actually compute the digits of an
absolutely normal number, one after the other.

The closest to a solution of this form has been the algorithm by Alan Turing [10, 2|, which
is unfeasible: determining the first ¢ digits would require time that is double exponential in i.
Another algorithm is the computable reformulation [1] of Waclaw Sierpinski’s construction [9],
which also requires double exponential time. Yet another construction of an absolutely normal
number was given by Wolfgang Schmidt [8]. He remarks his number is “clearly defined,” in
fact it is clearly computable, but its time complexity was not analyzed.

Here, we give an algorithm that computes an absolutely normal number in polynomial
time, indeed just above quadratic. Our algorithm is an efficient variant of Turing’s approach
on absolutely normal numbers, and as such, uses combinatorial tools to control divergence
from normality.

Jack Lutz and Elvira Mayordomo were the first to announce a method to compute an
absolutely normal number in polynomial time.” Santiago Figueira and André Nies reported
another construction. See [7] and [5]. In contrast to our algorithm, those two constructions are
based on polynomial-time martingales, a device from the theory of algorithmic randomness.

Our algorithm achieves speed of computation at the cost of slowness of convergence to
normality. We are left with the question of whether the trade-off between rate of computation

fSeventh International Conference on Computability, Complexity and Randomness, July 2012, Cambridge,
Great Britain.

and rate of convergence to normal is an inherent aspect of any computation of an absolutely
normal number or an artifact of our construction. There are known limits on the rate of
convergence to normality and there are examples that are nearly optimal [4, Chapter 4].

Question. Is there an absolutely normal number computable in polynomial time having a
nearly optimal rate of convergence to normality?

2 Preliminaries

A base is an integer b greater than or equal to 2, a digit in base b is an element in {0, ...,b—1},
and a block in base b is a finite sequence of digits in base b. The length of a block x is |z|, = ¢
is the subblock of the first ¢ digits of x and x[¢] is the ith digit of ; the same notation applies
when z is an infinite sequence of digits. A digit d occurs in a block = at position i if z[i] = d.
The number of occurrences of the digit d in the block x is occ(x,d) = #{i : z[i] = d}. If x and
u are blocks, x #u is the concatenation of x and then u. If u;, for i < m, are blocks, s;<mu; is
the concatenation of the u;, in increasing order of i. We use () to denote Lebesgue measure,
and log to denote logarithm in base 2.

2.1 Base-b representations and b-adic intervals

For each real number R in the unit interval we consider the unique expansion in base b of the
form R = Zle a;b~%, where the integers 0 < a; < b, and a; < b — 1 infinitely many times.
This last condition over a,, ensures a unique representation of every rational number, and
leads us to consider semi-open intervals [p,q) in the real line. We write (R); to denote the
representation of a real R in base b. We use the phrase b-adic interval to refer to a semi-open
interval I of the form [a/0™, (a +1)/b™), for a < b™. We move freely between b-adic intervals
and base-b representations. If x is a base-b block and it is understood that we are working
in base b, then we let .x denote the rational number whose expansion in base b has exactly
the digits appearing in x. Given the block x, the reals with base-b representations whose
sequences of digits extend z are exactly those belonging to the b-adic interval [.x, .z + b"“”'),
written in base b. Conversely, every b-adic interval [a/b™, (a+1)/b™) corresponds to a block
as above, where x is obtained by writing a in base b and then prepending a sufficient number
of zeros to obtain a block of length m.

2.2 Absolute Normality

Among the several equivalent definitions of absolute normality the following is the most
convenient for our algorithm.

Definition 2.1. A real number R is simply normal to base b if each digit d in base b has the
same asymptotic frequency 1/b in the representation of R in base b:

lim occ((R)pn,d)/n = 1/b.

n—aoo
R is normal to base b if it is simply normal to the bases b‘, for every i > 1.
R is absolutely normal if it is normal to every integer base b (equivalently, simply normal
to every integer base).

Emile Borel not only isolated the notion of normal number? but also proved that almost
every real number is absolutely normal.

Theorem 2.2 (Borel [3]). The set of absolutely normal numbers in the unit interval has
Lebesgue measure one.

2.3 Discrepancy

The simple discrepancy of an initial segment of the base b representation of a real number
R indicates the amount by which the digits in that initial segment vary from their expected
average. Note that D(u,b) is a number between 0 and 1 — 1/b.

Definition 2.3. Let u be a finite block of digits in base b. The simple discrepancy, D(u,b)
of u in the base b is the maximum for d € {0,...,b — 1} of |occ(u, d)/|u| — 1/b|.

Lemma 2.4. A real number R is simply normal in base b if and only if

lim D((R)p!n,b) =0.
n—00
Borel’s theorem is underpinned by the fact that for any base almost every sufficiently long
block has small discrepancy relative to that base. We will need an explicit bound for the
number of blocks of a given length having larger discrepancy than a given value. To make the
paper self-contained we include the proof of the next lemma, which gives such a bound. We
follow Hardy and Wright’s classic text [6], but sharpen the value obtained there.
Let the number of blocks of length k in base b where a given digit occurs exactly ¢ times

be py(k,i) = (’:) (b— 1)k,

Lemma 2.5 (|6], adapted from Theorem 148). Fiz a base b and a block length k. For every
real € such that 6/k <e < 1/b, Z pp(k,i) and 2 py(k, i) are at most bhebek/6
0<i<k/b—ck k/b+ek<i<k

Proof. Observe that for each ¢ such that ¢ < k/b, py(k,i — 1) < py(k,) holds; and for each i
such that ¢ > k/b, py(k,i) < pp(k,i—1). The strategy to prove the wanted bounds is to “shift”
the first sum to the right by m = |ek/2| positions, and the second sum to the left by m + 1
positions. We start with the first sum. Let a = k/b — k. For each ¢ such that 0 <i < a,

: po(k,i) pp(k,i+1) pp(k,i+m—1) ,
k,i) = - . : C . (ki +m).
pb(7/) pb(kf,l*"l) pb(k,’L‘I'Q) pb(k,l+m) pb(1 m)
The largest quotient in the expression above is %. Using the symbolic expression for
. pu(k,7) (t+1)(b-1)
k = . Th

mk) _ pllal+m=1) (o] +m)(-1)

py(kyi+1) pbéky la| +m) k—la]—m+1

*Borel’s original definition, given in [3], says that a real number R is normal to base b if each of the numbers
R, bR, bR, ... is simply normal to the bases b", for every n > 1. Although it seems more demanding, this
last condition is equivalent to requiring that just R be simply normal to the bases b™, for every n > 1. A proof
can be read in [4].

k—k/b+ek/2 1—1/b+¢/2
< 1—¢€b/2, (using € < 1/b)
efb€/2'

(kfb—ck/2)(b—1) eb/2

<

Since m = |ek/2| and ek > 6, 702 < UEER/2-1/2 b R/ATb/2 < o=b*k/6 \Ne obtain,

py(k,i) < ¢ be"k/6 py(k, 7 +m). Since Do ;o) Po(k, 1) = b* we conclude

Z po(k, i) < e betk/0 Z pp(k,i+m) < bre—bek/6,

0<i<a 0<i<a

To bound the second sum we shift the sum to the left by m + 1 positions. Let z = [k/b + ¢k].
For any integer ¢ such that z —m < ¢ <k,

po(k,i) po(k,i—1) po(k,i—m)

ki) = e
po(k, 1) pp(k,i—m —1

~opp(ki—1) py(k,i—2)

where these quotients increase as the indices decrease. So,

) -pp(k,i—m —1)

pb(kvi) < pb(ka [Z] _m) _ k — [Z] +m+1
po(k,i—=1) k2] =m—=1) (2] =m)(b 1)
k—k/b—ck/2+ 1
S b+ ek/2)(b—1)
< 1—¢€b/3.

6
k 3
implied by 1 —2/b < 1 — %, because ¢b < 1 and £ > 3/k. Therefore,](0]1;(,1)1) < o be/3
Dokt —

To see the last inequality observe that it is equivalent to eb —2/b—e¢ < 1 — which is
Then, using m + 1,

_ b2k

¢ pp(k,i—m —1).

py(k, i) < e_b“:(mﬂ)/gpb(k,i —m—1)<e

From this last inequality and Z py(k, i) = b* conclude Z pp(k,i) < blebek/6, O]

0<i<k z<i<k

Lemma 2.6. Let t = 2 be an integer and let € and § be between 0 and 1, with e < 1/t. Let k
be the least integer greater than the maximum of [6/€] and —In(5/2t)6/e2. Then, for all b <t
and all k' = k, the fraction of blocks x of length k' in base b for which D(x,b) > ¢ is less than
J.

Proof. Consider the case of a base b less than or equal to ¢t and suppose that d is a digit in
base b. By Lemma 2.5, the number of blocks x of length k such that |occ(z,d)/|z| — 1/b| is
greater than ¢ is bounded by 2b% ebe"k/6 Thus, the number of blocks z of length k& such that
D(z,b) > ¢ is bounded by 2bF+1e~b<*k/6 T have this constitute a fraction of no more than &
of all the b sequences, it is sufficient that § > 2be™<"*/%. This is implied by k > — In(6/2b)6/2.

Since 6 is less than or equal to 1, if b < ¢ is a base then —In(d/2t) > —1In(d/2b), and hence
k > —1n(d/2b)6/c2. But, then for any k¥’ > k, the number of blocks z of length &’ such that
D(z,b) > € is a fraction of no more than § of all the b sequences, as required. O

3 The Algorithm

3.1 Simple Normality in a Single Base

First, we discuss the ingredients for ensuring that a constructed real number X be simply
normal to a single base b. We will employ these means later for several bases simultaneously.

We consider a sequence of b-adic intervals (I;);>1 by recursion on i such that for each i,
the I; 41 is a subset of I;, and such that lim; ,o, p(Z;) = 0. The real number X determined by
the algorithm will be the unique element of ﬂi>1 I;, i.e. the limit of the left endpoints of these
intervals. We let x; be the block in base b such that I; is the b-adic interval [.z;, .x; + b*|’”i|).
We let u;1 be the block such that x;*u; 11 = x;41, i.e. x;11 is the concatenation of x; followed
by wiy1. Thus, for any k < @, x; = @k * ¥ jepy1,u; and X is equal to .ok * 3 je[ri1,00)U;j-

We will be working toward ensuring that simple discrepancy decreases as we consider
longer initial segments in the base-b expansion of X. We do so by choosing u;y1 so that
D(uit1,b) is smaller than a self-imposed threshold &;41, where the function i — ¢; is mono-
tonically decreasing. Then, for any k£ and any 7 + 1 sufficiently large relative to k, x;11 is the
concatenation of xy with % ,<;y1u;, a long string of discrepancy less than ;. It follows that
D(x;,b) is not much larger than ¢;.

We need to determine the appropriate length of u;1. By allowing |u;;1| be sufficiently
large, it is ensured that there will be some block w; 1 such that D(u;4+1,b) < €;41. By allowing
|ui+1| be sufficiently small in comparison to |z;|, it is ensured that for each ¢ less than or equal
to |uit1], D(it1!(|xi| + £),b) is not much larger than D(z;,b), i.e. the variations of simple
discrepancy within prefixes of u;,1 will introduce only small variations of simple discrepancy
within prefixes of x;11. Our task is to arrange for lim; ., &; = 0 while maintaining the
appropriate proportions in length between x; and ;4.

Lemma 3.1. Suppose that © and u are blocks in base b. If € € (0,1), D(z,b) < ¢ and
lu|/|z| < e, then for every ¢ less than or equal to |ul,

D((z = u)t(|z] + €),b) < 2e.
Proof. Let £ be fixed as above and let d be a digit in base b.
oce((z #u) M(|z] + £),d) - occ(z, d)

|z + ¢ el + Jul

1/b —

> M, by assumption on D(z,b)
|| + [ul

|ul
>1/b—e—(1/b) ———, by elementary means
] + Ju|
> 1/b— 2e, since € > |ul/|x|.

Therefore, if € > |u|/|z|, then for each £ < |ul,

occ((z = u) [(|z] + £),d)

< 2e.
2|+ ¢ c

1/b—

oce ((z = u) [(|z| + ¢),d)

|z| + ¢
the lemma. O

That

— 1/b < 2¢ can be verified similarly, which is sufficient to prove

Note that if u; and ug are blocks in base b such that D(uj,b) < ¢ and D(ug,b) < ¢,
then D(uj *ug,b) < e. By applying this observation and Lemma 3.1, we obtain the following
corollary by induction.

Corollary 3.2. Tuke as given blocks x and w; in base b, for i < m. Suppose € satisfies the
following conditions.

1. D(z,b) <e.
2. For each i , D(ui,b) <e.

sm
3. For each i < m, |u;|/|z * %j<ju;| <e.
Then for every £ less than or equal to | ski<m uil, D ((x * ki<mu;) [(x| + £),0) < 2e.

The next lemma is essentially a special case of Lemma 3.1, with the roles of z and w
reversed. We will apply it to analyze the effect of iteratively appending blocks of small
discrepancy to an initial one.

Lemma 3.3. Suppose that x and u are base b blocks. If € is given so that D(u,b) < & and
|z|/lu| < e, then D(x = u,b) < 2e.

3.2 Simple Normality in Multiple Bases

We turn to working simultaneously with bases b € {2,...,¢} in the context of stage i of a
construction by recursion. Instead of one interval I;, we will work with a nested sequence of
intervals, I; o > I; 3 © ... I, such that each I;} is b-adic. Lemma 3.4 shows that the lengths
of these intervals need not shrink too quickly.

Lemma 3.4. For any interval I and any base b, there is a b-adic subinterval I, such that

puly) = pu(I) /(20) -

Proof. Let m be least such that 1/b™ is less than p([I), i.e. m = [—logy(u(I))]. Note that
1/b™ is greater than or equal to u(I) /b, since 1/b™m~! > p(I). If there is a b-adic interval of
length 1/0™ strictly contained in I, then let I be such an interval, and note that I, has length
greater than or equal to u(I)/b. Otherwise, there must be an a such that a/b™ is in I and
neither (a — 1)/b™ nor (a + 1)/b™ belongs to I. Thus, 2/b™ is greater than p(I). However,
since 1/b™ < u(I) and b is greater than or equal to 2, 2/b™*1 is less than u(I). So, at least

one of the two intervals
ba—1 ba ba ba+1
pm+1 7 pm+1 or pm+1’ pm+1

must be contained in I. Let I be such. Then, the length of I, is

1 1 2
—_—— = —— I)/(2b).
bm+1 2h bm > :u’()/(b)

In either case, the length of I is greater than pu(I) /(2b). O

Definition 3.5. A t-sequence is a nested sequence of intervals, I = (I2,...,1;), such that
I, is dyadic and for each base b > 2, I, is a (b + 1)-adic subinterval of I such that
w(Iys1) = p(ly) /2(b +1). We let x,(I) be the block in base b such that .zy(I) is the
representation of the left endpoint of I in base b.

We can iteratively apply Lemma 3.4 for the following corollary.

Corollary 3.6. For cvery dyadic interval Is and integer t = 2 there is a t-sequence fstarting
with IQ.

If I is a t-sequence, then for any b < ¢ and any real X € I, X has zp(I) as an initial
segment of its representation in base b. If, further, I' = (I3, ... 1},) is a t’-sequence with ¢t < ¢/
such that I, < I; and X € I,
extend xb(f) to a longer initial segment :Ub(f’) of the base b representation of X. As opposed
to arbitrary nested sequences, in t-sequences there is a function of ¢ that gives a lower bound

of the ratio between the measures of I; and I. That is, u(l;) is at least u(l2) /(2! t!).

then for each b less than or equal to t, I specifies how to

3.3 Construction by Recursion

Our construction of the real X is by recursion and written in terms of two given functions,
i — t; and ¢ — g;. The first determines the number of bases to be considered at stage i
and the second determines a rational number upper bound on the allowed discrepancies of
the blocks of new digits added to the representations of X in those bases. In stage i + 1, we
will have a t;-sequence 1:; = (Li, L;3,...,1is;) given from the previous stage, with associated

=

blocks xy(I;), for b < t;.

-

Definition 3.7. Following Definition 3.5, for b < t;, let x;11 be zp(I;11), the base b
representation of the left-endpoint of I;; 1, and let u; 11 be ub(f;+1), e Tit1p = Tip*Uip1p.

Algorithm 3.8. Assume given computable functions i — ¢; and ¢ — ¢; such that ¢; and 1/g;
are non-decreasing in ¢ and unbounded, with ¢; < 1/¢t;. Let ;41 be the upper bound of the
fraction of blocks in base b for b < t;, of the length considered at stage i + 1, that can be
discarded,

Lt

8t 2ti+ti+1ti!ti+1! '

Let k;1+1 be the length for the block in base ¢; to be added at stage ¢ + 1,
kiv1 = max([6/ei41], [—In(8i41/(2t:))6/e,1]) + 1.

Initialization. Start with Iy = (({o,2)), with Ipo = [0, 1).

dit1 =

Recursion step i + 1. Determine the t;, 1-sequence 1:;+1 for stage i + 1 as follows.

1. Let L be a dyadic subinterval of I;;, such that pu(L) > u(;4,) /4.

2. For each dyadic subinterval Js of L of measure 27108 ti]ki“u(L), let J = (Jo, 355 Jtiy)
be a t;11-sequence for Js.

3. Let —f;+1 be the leftmost of the ¢;,1-sequences J considered above such that for each
b<ti, D(up(J),b) < &iy1.

We let X be the unique real in the intersection of the intervals in the sequences I_; Expressed
in base b, X = lim; o .z;p. Expressed in terms of representations, (X) = skj<ootip.

To show that X is well-defined, we just need to verify that at each stage i + 1 there is
tiy1-sequence ;1.

To prove that at each stage ¢ + 1 there is 1:;+1, we compare the measures of two sets.
Let & be the union of the set of intervals Jy, , over the 2[logti]ki+1—many ti+1-sequences

J=(Ja,...,Jp..). By Lemma3.4, u(L) > () /4, and for each J, w(Jesy) = ﬁM(JQ).
o ¢ iHltip!

Observe that the possibilities for Jy form a partition of L. Hence, u(S) > WM(L).
it1!

1 1 1
> St 4 2t p(Li2) . Let N be the subset of S defined
as the union of the set of intervals .J;, ., which occur in ¢;1-sequences which are not suitable.

i+1

Combining inequalities, u(S)

i+1
A ti41-sequence J is not suitable if for some b < t;, D(uy(J),b) > 541. By construction, us(J)
has length [logt;|ki+1 and for each b < t;, ub(j) has length greater than or equal to k;i1.
Each J considered at stage ¢ + 1 is such that for every b < ¢; each interval J, is a subinterval
of I; . According to Lemma 2.6 and by the choice of k;;1, for each b < t;, the subset of I;

consisting of reals with base b representations .xp * up(J) for which D(up(J),b) > €;+1 has
measure less than 0;11 p(Z;p), and hence less than 0;114(7;2). Hence, p(N) < t; dip1 pu(Li2) -

By the choice of §;;1, pu(N) i WLi2). Then, u(N) < u(S). Since S is a
1!

<
4 2tit;) tivig;
superset of N, this proves that at stage i + 1 there is a suitable ¢;,1-sequence I; 1.

3.4 Absolute Normality

We give sufficient conditions on the functions ¢ — ¢; and ¢ — ¢; to ensure absolute normality.

Theorem 3.9. Suppose that the functions i — t; and i — &; are monotonic and such that
lim; oo t; = 00 and lim;_,,&; = 0. Further, suppose that for each i and for each b < t;,
|uit1p|/|Tip| < €i41. Then, the real X constructed in terms of these functions is absolutely
normal.

Proof. Let b be an integer greater than or equal to 2 and let € € (0,1). Choose s so that
b is less than t; and 4e; is less than €. During stages i + 1 after s, we ensure of the
constructed real X that the base b representation of X is obtained by appending blocks
Uit1p to x;p for which D(ujtq1p,b) < es. Thus, for any n, D(ks<iti<nUitip,b) < €. Fix
s1 so that |xsp|/(s1 — |2sp|) < €5. By noting that we add at least one new digit in the
base b representation of X during every stage after s and applying Lemma 3.4, we have that
D(xsp * ks<iti<s Wit1,h,0) is less than 2e,. Then, Corollary 3.2 applies to conclude that for
every £,
D(X MNwsp * ks<iti<siWit1p] +£,0) < 2-2e5 < e.

By Lemma 2.4, this is sufficient to prove the theorem. O

4 Implementation and Time Complexity

We consider the time complexity of the algorithm to be the number of elementary operations
required to output the first ¢ digits, where an elementary operation takes a fixed amount of
time. We will also count the number of mathematical operations performed by the algorithm,
where mathematical operations include addition, subtraction, comparison, multiplication,
division and logarithm. We use the big O notation standard in computer science, which
illustrates the asymptotic behavior of a given function. A function g(z) is O(h(z)) when there
are constants xg and ¢ such that for every = > xg, g(x) < ¢ h(x).

Algorithm 3.8 depends on two given monotonic functions ¢ — t; and i — ¢;, By controlling
the rates at which ¢; and ¢; approach their limits, we can control the number of operations
required to run the construction. Thus, the count of the performed operations up to step
is given as a product of two factors, one that depends only on ¢; and ¢; which can be made
arbitrarily small, and the other that does not, which is the significant factor.

We will say that a number is small if it can be bounded by a function of ¢; and &;11.
By the virtue of the algorithm all values are polynomial in the inverse of the measure of
the smallest interval I being considered, so they can be represented by O(—log u(I)) digits.
Ezpensive mathematical operations are multiplications and divisions having both operands
non-small. Non-expensive mathematical operations are operations having at least one small
operand and also all additions, subtractions and comparisons. Expensive operations require
O((—log u(I))?) elementary operations, whilst for the non-expensive O(g(z)(—log u(I))) ele-
mentary operations suffice, where ¢ is some increasing function and z is small.

We represent b-adic intervals as tuples of four integers {a, b, m, p) such that the represented
intervals are [a/b™, (a+1)/b™) and p = b™. The last terms p are kept just for efficiency of com-
putation. For a bj-adic interval I} = {a, b1, m1, p1) and a be-adic interval Is = {ag, by, ma, p2)
we define left(I, Is) = a1 p2 and right(Iy, Is) = as p;.

The next lemma bounds the needed operations to find a b-adic subinterval of a given
interval. It is intended that the given values be previously computed data; the proof revisits
the existential result given in Lemma 3.4.

Lemma 4.1. Suppose we are given two bases by and by and two by-adic intervals Jy and Iy,
We are also given a ba-adic interval I such that Jy € Iy < Iy, and the integers {1 = left(Iy, I2)
and r; = right(I, I3). Suppose we want to compute a by-adic subinterval Jo of Jy such that
wu(J2) = p(Jr) /(2b2), and also compute the integers £; = left(Jy, J2) and rj = right(J1, J2).
The result can be obtained by two alternative computations, one takes O((—log u(J1))?) ele-
mentary operations; the other takes O(g(by,ba, —log(u(J1) /u(11)))(—log u(Jr))) elementary
operations, where g is some increasing function. In either case, O(g(b1,ba, —log(p(J1) /1(11))))
mathematical operations suffice.

Proof. For s = 1,2, let I be given by {es, bs, ns, qsy and Js be given by {as, bs, ms, psy. Notice
that pu(ls) = 1/qs = 1/by* and u(Js) = 1/ps = 1/b*s. Within this proof, small values are
those that can be bounded by the factor g(bi, b2, —log(p(J1) /1e(L1))). In particular, later in
the proof it becomes clear that for each s, ms — ns and as — e are small.

First we give a computation that uses O(g(b1, b2, —log(u(J1) /p(11)))) non-expensive math-
ematical operations. We start calculating the small values b7*s~"s. Using iterated squaring it
takes O(log(ms — ns)) multiplications, requiring O(log bﬁ(mr”s)) = O((—log(u(Js) /u(Is)))?)
elementary operations, in total. Notice that u(J2) /u(I2) > wu(J1) /(2bap(11)) and so

O(—log(u(J2) /u(l2))) < O(=log(u(J1) /u(11))).

We need to find as, mo, p2, £5 and 7, such that:

(1) a1 /by < ag/by?* and (a2 +1)/b5? < (a1 + 1)/b7"
(2) Ly < 2by /by

(3) p2 = by

(4) gJ = 1eft(J1, JQ) = aj p2 and ry= right(Jl, JQ) = az pi-

Since Jy < Iz, ng < ma. From p(J2) = p(J1)/(2b2) and p(lz) < p(l;) we can con-
clude that p(J2) = (u(l2) /(2b2))(u(J1) /1(11)). Application of —logy,, to both sides yields

ma < ng + (m1 — nyp)log,, by + 2. So there are at most (m; — ny)logy, by + 2 possible
values for mg, and we can iterate through each of them. From Jy & Is we also infer that
eaby? ™" < ag < (e2 + 1)by* 7" — 1, which means that there are b5'>™ "2 possible values for
as and we can iterate through each of them. Since the number of iterations required to try
the possibilities for both msy and ag are small numbers, they can be bounded by choosing ¢
appropriately. To compute the starting and ending values in such iterations we only need a
small number of non-expensive mathematical operations, and to change between consecutive
values we need only addition. We then check for each pair if all requirements are met. Since
Lemma 3.4 ensures that mo and a9 exist, the described procedure will eventually find a suitable
pair meeting the requirements.

For a given pair as and mg, we can compute py by ps = ¢2b5'?" "? with a single non-
expensive mathematical operation. To calculate r; first notice that

r; = apr = azby"
= (a2 —e2)qb" " + eaqu 07T
= qi(ag —e)b]" " 4 b

Since as—e, is small, ry can be obtained from the last expression using only a constant number
of non-expensive mathematical operations, because all factors are small except the first one of
each term. The calculation of £; is similar. At this point, £, r; and p2 meet the requirements
by their construction. To check the requirements for ay and mg, notice that requirement (1)
is equivalent to 0 < right(Jy, Jo) — left(Jy, J2) < p2 — p1 and requirement (2) is equivalent to
p2 < 2bop1, and both can be checked with a constant number of non-expensive mathematical
operations, given that we already calculated ¢; = left(Jy, Jo) and r; = right(J1, J2).

An alternative way of computing can be achieved by replacing the iteration through
possible values of as and me by their direct computation using the given bounds and rounding.
This entails a constant number of expensive mathematical operations. O

The next lemma counts the steps in one complete stage of our algorithm. As in the
previous lemma, it is intended that the given values be previously computed data. We count
all operations except the computation of t;11, ;41 and k;q1, which is postponed until the
subsequent theorem.

Lemma 4.2. Assume we are given i, t;, €;+1 and t;v1. Then, there is computable function
h(t,e), increasing in t and 1/, such that stage i + 1 of Algorithm 3.8 can be completed in
O(h(tit+1,€i+1)) mathematical operations. Let n be the minimum number of digits that are
sufficient to represent each of the endpoints of the intervals of I;. In case tiv1 = t;_1 stage
i+1 requires O(h(ti+1,€i11) n) elementary operations; otherwise it requires O(h(t;y1,&;41) n?)
elementary operations.

Proof. We will count the operations needed to run all the steps of stage i+ 1. Assume first that
t;+1 = t;—1. Then, all bases considered in stage i + 1 were also considered in stages ¢ and 7 — 1.
Lemma 4.1 applies to count the operations needed to find subintervals. In each application
of the lemma, the values of I, Is, ¢; and r; in the hypothesis are carried forward from the
computation in the previous stage. Then, —log(u(J1) /u(l1)) is bounded by [logt;|ki+1 and
hence is a small value. Since O(—log u(J1)) = O(n), finding a subinterval requires at most
O(g(ti+1,€i+1)) mathematical operations or O(g(t;+1,€;) n) elementary operations.

We write h with a subindex to indicate a function of ¢;,1 and €;11. Let h, be such that each
non-expensive mathematical operation in this procedure uses at most O(h,) elementary op-

10

erations and each expensive mathematical operation uses at most O(h, n). The computation
can be organized in the following steps.

e Compute [log(t;)], d;+1 and k;+;. This takes a constant number of non-expensive
mathematical operations or O(h,) elementary operations.

e Compute a dyadic subinterval L of I; 4, such that (L) > p(Z;,)/4. This takes O(g(tit1,€i+1))
mathematical operations or O(g(t;+1,€;+1) n) elementary operations.

e In increasing order of left endpoint, consider the dyadic subintervals Jo of L:

1. For each possible Jy, we determine a t;,1-sequence J starting with J,. This takes
O(ti+1 9(ti, €i+1)) mathematical operations or O(h1 g(ti,€i+1) n) elementary operations.

2. For each b < t;, compute the base-b representation of the left endpoint ub(f) of J_(; This

—

requires O(|uy(J)|) non-expensive mathematical operations, because each operation has
at least one operand is a base and hence depends only on t;, and |uy(J)| < [log t;]k;41 also
depends only on ;. Therefore, this takes O(hs) mathematical operations or O(hs h,)

elementary operations.

3. Calculate thresholds for the number of occurrences of each digit to check D(uy(J),b) < €i41.
Such thresholds are of the form (1/b+ &;.1)|u(J)| and therefore can be calculated with
a constant number of non-expensive mathematical operations for each base. Hence,
O(t;) = O(hs) non-expensive mathematical operations or O(hs h,) elementary opera-

tions in total.

4. The counting of occurrences and the comparison against the threshold operate only on
small values (bounded by max(t;, |uy(J)|)). This step takes O(|up(J)| max(t;, |uy(J)|))
non-expensive mathematical operations for each base. In total, this is

=

O(t; |up(J)| max(ty, [up(J)])) = O(ha)

mathematical operations or O(hy h,) elementary operations.

The search stops upon finding a suitable ¢;.1-sequence, before exhausting the 2/°8tilki+1 many

intervals Jy. This requires at most hy = 2M98%lki+1 jterations. We can complete the proof for
the case t;11 = t;—1 by setting h = hy (h1 g + ha + hg + hy4) he.

If t;41 > t;_1, then it is possible that for some uses of Lemma 4.1 we do not have any
previously computed data. In this case we set the intervals in the hypothesis of the lemma
as I1 = Iy = [0,1) and ¢; = r; = 0, making —log(u(Js) /u(ls)) = —log(u(Js)) = O(n)
for s = 1,2, and thus requiring O(g n?) elementary operations for each application of the
alternative computation in Lemma 4.1. This requires O(hs h1 g n?) elementary operations
more than in the previous case. Using the same h as before, this case entail at most O(h n?)
elementary operations. O

Theorem 4.3. Suppose f is a computable non-decreasing unbounded function. Algorithm
3.8 computes an absolutely normal number X such that, for any base b, it outputs the first i
digits in the base b representation of X after performing O(f(i) i) mathematical operations or
O(f(i) i®) elementary operations.

Proof. We will define functions ¢ — t; and ¢ — ¢; simultaneously with running an implemen-
tation of Algorithm 3.8. Let t; = 2 and &1 = 1/2 Assume k; = 1 and f(1) is known data,
having a value greater than h(2,1), for the h as in Lemma 4.2

11

For the recursion stage 7 + 1, assume that ¢; = v and ; = 1/v are given, with v > 2, and
that I; is the result of the construction as determined by the first ¢ many values of ¢ and ¢
with associated blocks x;;. If the number of stage 7 4 1 is a power of 2, we execute ¢ many
elementary operations in the computation of the initial values of f, obtaining the values of f
on the numbers less than or equal to some integer m. Notice that 1 < m < i. Define § by

1 1
8t 2litvtl (v + 1)

which would be the value of 6;41 if we were to define t;1; = v+ 1. Let k(e, §,t) be the function
defined by the calculation of k as given in Lemma 2.6. Finally, we execute ¢ many elementary
operations in the computations of the functions k(1/(v+1),d,v+1) and h(v+1,1/(v+1)). If
we obtain values for these functions within the allotted number of operations and they satisfy
the inequalities h(v + 1,1/(v + 1)) < f(m) and, for each b < t;,

[log(v + 1)]k(1/(v + 1),d,v + 1) + [—log(d)] _ 1
’xiﬁ v+ 1’

then define t;11 = v+1 and ;41 = 1/(v+1). Otherwise, let t;;1 =t; = vand ;41 = &; = 1/v.
We then complete stage i + 1 of the construction and thereby complete the recursion step in
the definitions of the functions ¢ and €.

Clearly, i — t; and i — ¢g; are computable, i — ¢; is non-decreasing, and i — ¢&; is
non-increasing. Applying the assumptions on f, lim; ,et;41 = o0 and lim; ,e ;41 = O.
Further, in the construction determined by these functions, if during stage j + 1 the value of
gj+1 is lowered from 1/(v — 1) to 1/v, then for each b < ¢,

[log(v + 1)|k(1/v,0j41,v + 1) + [—log(dj+1)] _ 1
|| v

o

For every subsequent stage i + 1 during which €;11 = 1/v and for every b < v + 1,
w10l < Mog(o + DIE(L/(0 + 1), 8541, 0 + 1) + [~ log(8;41)]

and |24 15| = |@;p|, S0 [uit1p|/|2ip| is less than or equal to 1/(v + 1). Thus, the construction
satisfies the hypotheses of Theorem 3.9 and thereby produces an absolutely normal number.
All mentioned mathematical operations are non-expensive, because the only non-small
operands in them are of the form |z;;| and all those appear on independent calculations. The
computations of the values of ¢ and ¢ during stage i+ 1 add only O(i) elementary operations to
the construction itself. Since that calculation is only done when the stage number is a power of
two, in total this adds O(i) extra elementary operations. Since f is non-decreasing, for every
i,iftiy1 =v+1then h(v+1,1/(v+1)) < f(i +1). From the way ¢; is defined, ¢;41 > t;_1 in
at most O(logi) stages; therefore, using Lemma 4.2 the total number of required elementary
operations is O(¢ f(i+1)) + Z;O:gf F(29 +1) 29%) = O(f(i +1) i%). Since each stage produces
at least one extra digit in every base considered, i stages are enough to produce the first ¢
digits in any of those bases. O

Acknowledgements. Becher’s research was supported by CONICET and Agencia Nacional
de Promocién Cientifica y Tecnologica, Argentina. Slaman’s research was partially supported
by the National Science Foundation, USA, under Grant No. DMS-1001551 and by the Simons
Foundation. This research was done while the authors participated in the Buenos Aires
Semester in Computability, Complexity and Randomness, 2013. We thank Santiago Figueira,
Jack Lutz, Elvira Mayordomo and André Nies.

12

References

1]

2]

3]

4]

[5]

[6]

7]

8]

19]

Veroénica Becher, Santiago Figueira. An example of a computable absolutely normal
number. Theoretical Computer Science 270:947-958, 2002.

Veronica Becher, Santiago Figueira, Rafael Picchi. Turing’s unpublished algorithm for
normal numbers. Theoretical Computer Science 377:126-138, 2007.

Emile Borel. Les probabilités d’enombrables et leurs applications arithmétiques. Supple-
mento di Rendiconti del circolo matematico di Palermo, 27:247-271, 1909.

Yann Bugeaud, 2012. Distribution Modulo One and Diophantine Approzimation. Number
193 in Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, UK,
2012.

Santiago Figuiera and André Nies. Feasible analysis and randomness, Preprint, 2013.

G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford University
Press, Oxford, sixth edition, 2008.

Elvira Mayordomo. Construction of an absolutely normal real number in polynomial time.
Preprint, 2013.

Wolfgang M. Schmidt. Uber die Normalitit von Zahlen zu verschiedenen Basen. Acta
Arith., 7:299-309, 1961/1962.

Waclaw Sierpinski. Démonstration élémentaire du théoréme de M. Borel sur les nombres
absolument normaux et détermination effective d’un tel nombre. Bulletin de la Société
Mathématique de France 45:127-132, 1917.

[10] Alan Turing. A note on normal numbers. In J.L.Britton, editor Collected Works of A.M.

Turing: Pure Mathematics. North Holland, Amsterdam, 117-119, with notes of the editor
in 263-265, 1992.

13

