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Abstract. We will discuss the proof of Waldhausen’s conjecture that compact aspheri-
cal 3-manifolds are virtually Haken, as well as Thurston’s conjecture that hyperbolic 3-
manifolds are virtually fibered. The proofs depend on major developments in 3-manifold
topology of the past decades, including Perelman’s resolution of the geometrization con-
jecture, results of Kahn and Markovic on the existence of immersed surfaces in hyperbolic
3-manifolds, and Gabai’s sutured manifold theory. In fact, we prove a more general the-
orem in geometric group theory concerning hyperbolic groups acting on CAT(0) cube
complexes, concepts introduced by Gromov. We resolve a conjecture of Dani Wise about
these groups, making use of the theory that Wise developed with collaborators including
Bergeron, Haglund, Hsu, and Sageev as well as the theory of relatively hyperbolic Dehn
filling developed by Groves-Manning and Osin.
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1. Introduction

In Thurston’s 1982 Bulletin of the AMS paper Three Dimensional Manifolds,
Kleinian groups, and hyperbolic geometry [118], he asked 24 questions which have
guided the last 30 years of research in the field. Four of the questions have to do
with “virtual” properties of 3-manifolds:

• Question 15 (paraphrased): Are Kleinian groups LERF? [76, Problem 3.76
(Hass)]

• Question 16: “Does every aspherical 3-manifold have a finite-sheeted cover
which is Haken?” This question originated in a 1968 paper of Waldhausen.
[75, Problem 3.2] 1

• Question 17: “Does every aspherical 3-manifold have a finite-sheeted cover
with positive first Betti number?” [76, Problem 3.50 (Mess)]

∗Agol supported by DMS-1105738 and the Simons Foundation
1 “Of those irreducible manifolds, known to me, which have infinite fundamental group and

are not sufficiently large, some (and possibly all) have a finite cover which is sufficiently large.”
[122] Waldhausen may only have been referring to small Seifert-fibered space examples that he
was aware of, but the general question has been attributed to him.
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• Question 18: “Does every hyperbolic 3-manifold have a finite-sheeted cover
which fibers over the circle? This dubious-sounding question seems to have
a definite chance for a positive answer.” [76, Problem 3.51 (Thurston)]

The goal of this talk is to explain these problems, and how they reduce to a
conjecture of Wise in geometric group theory.

Note that there are now several expository works on the topics considered here
[21, 18, 19, 30, 46].

2. 3-manifold topology

Haken introduced the notion of a Haken manifold as a way to understand certain
3-manifolds via an inductive procedure by cutting along surfaces [66].

Definition 2.1. A closed essential surface f : Σ2 →M3 is a surface with either

• χ(Σ) ≤ 0 and f# : π1(Σ) ↪→ π1(M) is injective or

• Σ ∼= S2, and [f ] 6= 0 ∈ π2(M) (in other words, f is not homotopically trivial).

If M is a manifold, then M is termed aspherical if its universal cover M̃ is con-
tractible. For example, this holds if M̃ ∼= Rn. In three dimensions, M is closed and
aspherical if and only if M̃ ∼= R3, or equivalently π2(M) = π3(M) = 0 (this is a
non-trivial consequence of the geometrization conjecture). By the sphere theorem
of Papakyrokopoulos [103], equivalently |π1(M)| =∞ and M is irreducible.

If M is aspherical and contains an embedded essential surface, then M is called
Haken.

For example if M is aspherical, and rank(H1(M ;Q)) = b1(M) > 0, then M is
Haken. This follows from the loop theorem.

A 3-manifold M fibers over the circle if there is a map η : M → S1 such
that each point preimage η−1(x) is a surface called a fiber.

If M is closed and 3-dimensional and fibers over S1, then the fiber is a genus
g surface Fg, and M is obtained as the mapping torus of a homeomorphism f :
Fg → Fg (Figure 1),

M ∼= Tf =
Fg × [0, 1]

{(x, 0) ∼ (f(x), 1)}
.

A fibered 3-manifold M has positive first betti number, and the fiber surface
is essential. Therefore M is aspherical if g > 0.

A motivating question in 20th century 3-manifold topology:
Given an immersed essential surface in a 3-manifold, does there exist

an embedded essential surface of the same type?
This has been an important question because embedded essential surfaces are

easier to work with than immersed surfaces in general. For example, the theory
of normal surfaces allows certain questions about embedded essential surfaces in
3-manifolds to be made algorithmic.

Examples include when χ(Σ) ≥ 0:



Virtual properties of 3-manifolds 3

Figure 1. A fibered manifold is a mapping torus of a surface homeomorphism f : Fg → Fg

• Dehn’s Lemma [41, Dehn 1910] [103, Papakyriokopoulos 1957]: If an em-
bedded loop in ∂M is homotopically trivial, then it bounds an embedded
disk.

• The Loop Theorem [103]: Similar statement for an immersed loop in ∂M .

• The Sphere Theorem [103, Papakyriokopoulos 1957] [112, Stallings 1969]: If
π2(M) 6= 0 (i.e., there’s an immersed essential sphere in M), then there exists
an embedded essential sphere in M .

• The annulus and torus theorems [72, Jaco-Shalen] and [73, Johannson]:

In a Haken manifold, if there is an immersed essential annulus or torus, then
there is an embedded one.

• The Seifert fibered space theorem [Scott [111], Mess, Tukia [121], Casson-
Jungreis [35], Gabai [52]]:

If the center Z(π1(M)) 6= 0 and M is aspherical, then M is Seifert-fibered.

As was known to Waldhausen, there is an infinite class of aspherical Seifert-
fibered spaces which are non-Haken, so one cannot hope to extend the torus the-
orem to non-Haken 3-manifolds. For example, one may consider the unit tangent
bundle to a turnover orbifold of euler characteristic < 0. However, these are easily
shown to be virtually Haken, since they have a finite-sheeted cover homeomorphic
to the unit tangent bundle of a surface. Thus, one may ask the question:

Given an immersed essential surface in a 3-manifold, does there exist
a finite-sheeted cover with an embedded essential surface of the same
type?

These classic theorems of 3-manifold topology are now superseded by the Ge-
ometrization Theorem (Question 1 from Thurston’s list [118] [76, Problem 3.45
(Thurston)]). The geometrization theorem states that an irreducible 3-manifold
M admits a (possibly non-orientable) embedded essential surface Σ ↪→ M which
is unique up to isotopy, such that χ(Σ) = 0 and each component of M −Σ admits
a complete locally homogeneous Riemannian metric of finite volume. There are
eight possible model geometries for these metrics.

This question was formulated by William Thurston at Princeton in the 1970s,
and was proved by him for Haken 3-manifolds [119, 120], and conjectured to hold
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in general. A proof of the conjecture was given by Grigori Perelman in 2003 using
Ricci flow [104], finishing a program of Hamilton who introduced the Ricci flow in
the 1980s [68].

The most interesting and least understood homogeneous geometry is hyperbolic
geometry.

Consider a chunk of glass sitting on a table, so that the speed of light n is
proportional to the height above the table (Figure 2). Then light will follow a
geodesic path in the glass which is a semicircle or line perpendicular to the tabletop.

Figure 2. A physical model for hyperbolic space

This gives a physical model for the upper half space model of hyperbolic space.

Manifolds modeled on this geometry are hyperbolic 3-manifolds if they admit
a complete Riemannian metric of constant curvature −1, with fundamental group
a Kleinian group (if it is finitely generated). Classic examples of hyperbolic 3-
manifolds are the Seifert-Weber dodecahedral space, the figure eight knot
complement, and the Whitehead link complement (Figure 3).

Given a cusped hyperbolic 3-manifold (finite-volume non-compact), Thurston
showed that one may deform the hyperbolic metric to obtain hyperbolic metrics
on Dehn fillings [117, Theorem 5.8.2]. A Dehn filling is obtained from a manifold
with torus boundary by identifying the boundary with the boundary of a solid
torus (Figure 4). The homeomorphism type of the Dehn filling is determined by
the slope of the meridian of the torus, which may be regarded as a rational number
∈ PQ1.

Thurston proved that all but finitely many slopes ∈ PQ1 give Dehn fillings on
a hyperbolic 3-manifold are hyperbolic.

An aspherical 3-manifold M whose geometric decomposition does not contain a
hyperbolic piece, then M is called a graph manifold. If M is not geometric, then
all of the geometric pieces of the JSJ decomposition are modeled on the geometry
H2 × R.
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Figure 3. Examples of hyperbolic manifolds of finite volume

(a) Seifter-Weber space (b) Figure 8 knot

(c) Whitehead link

3. Virtual properties of 3-manifolds

• Recall that a compact aspherical 3-manifold M is Haken if it contains an
embedded π1-injective surface (e.g. a knot complement). The Seifert-Weber
space is non-Haken [28, Burton-Rubinstein-Tillmann], as well as hyperbolic
surgeries on the figure 8 knot complement [117, Corollary 4.11].

• A 3-manifold M is virtually Haken if there is a finite-sheeted manifold
cover M̃ →M such that M̃ is Haken, e.g. hyperbolic surgeries on the figure
8 knot complement are virtually Haken [44, Dunfield-Thurston].

• Waldhausen conjectured that every aspherical 3-manifold M is virtually
Haken (the virtual Haken conjecture, Question 16).

• A fortiori, does M have a finite-sheeted cover M̃ → M with b1(M) > 0
(Question 17)? Recall that b1(M) = rank(H1(M ;Q)).

• There has been much work on the virtual Haken conjecture before for certain
classes of manifolds. These include manifolds in the Snappea census [44],
surgeries on various classes of cusped hyperbolic manifolds [12, 13, 14, 25,
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Figure 4. Dehn filling on the figure 8 knot complement

37, 39, 40, 77, 93, 94], certain arithmetic hyperbolic 3-manifolds (see [109] and
references therein), and manifolds satisfying various group-theoretic criteria
[78, 79, 87].

Remark: Since closed 3-manifold fundamental groups have balanced pre-
sentations, it is unlikely that a generic 3-manifold M has b1(M) > 0, which
clarifies the difficulty of this question.

• M is virtually fibered if there exists a finite-sheeted cover M̃ → M such
that M̃ fibers.

• If M fibers, then b1(M) > 0, so this is stronger than asking for virtual
positive betti number.

• There have previously been several classes of hyperbolic 3-manifolds shown
to virtually fiber, including 2-bridge links [123, Walsh], some Montesinos
links [4, Agol-Boyer-Zhang],[59, Guo-Zhang], [58, Guo], and certain alternat-
ing links [9, Aitchison-Rubinstein], as well as many examples of hyperbolic
manifolds [17, Bergeron], [36, Chesebro-DeBlois-Wilton], [49, Gabai], [82,
Leininger], [106, Reid], [125, Wise].

• Thurston asked whether every hyperbolic 3-manifold is virtually fibered (Ques-
tion 18)?

If M is a finite volume hyperbolic 3-manifold, and f : §g → M is an essential
immersion of a surface of genus g > 0, then there is a dichotomy for the geometric
structure of the surface discovered by Thurston, and proven by Bonahon in general
[23].

Either f is
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• geometrically finite or

• geometrically infinite.

The first case includes quasifuchsian surfaces (Figure 5). A geometrically
finite surface preserves a convex subset of hyperbolic space whose quotient by the
group has finite (non-zero) volume.

In the geometrically infinite case, the surface is virtually the fiber of a fibering
of a finite-sheeted cover of M .

The Tameness theorem [1, Agol], [31, Calegari-Gabai] plus the covering
theorem of [32, Canary] implies a similar dichotomy for finitely generated sub-
groups of π1(M):

either a subgroup is geometrically finite, or it corresponds to a virtual fiber.

Figure 5. The limit set of a quasifuchsian surface group

The limit set of a fiber of a fibration is ∂∞H3 = Ĉ, but may be regarded as
a sphere-filling curve [34, Cannon-Thurston]. In certain cases, one may construct
these sphere-filling curves by approximation by subdivision tilings [10, Alperin-
Dicks-Porti] (Figure 6) in a similar fashion to the classical construction of Peano
curves by approximations.

Analogous to the loop, sphere, annulus and torus theorems, one may ask:

Given an essential map of a surface f : Σ→M with χ(Σ) < 0, is there
an essential embedding Σ ↪→ M? The answer to this question is no since
there are examples of non-Haken 3-manifolds such as the figure 8 knot hyperbolic
fillings which have virtual positive betti number, and therefore contain an immersed
essential surface, but no embedded essential surface.
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Figure 6. Approximates to the sphere-filling Peano curve invariant under the figure 8
knot complement fiber group
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With further hypotheses on the surface, the answer to this question can be a
qualified yes.

Gabai proved that if f : Σ #M is an immersed oriented surface with χ(Σ) ≤ 0,
and f∗([Σ]) 6= 0 ∈ H2(M), then there is an embedded essential surface Σ′ ↪→ M
such that [Σ′] = f∗[Σ] ∈ H2(M), and χ(Σ′) ≥ χ(Σ) [48, 50, 51].

Gabai’s proof makes use of an inductive method called sutured manifold
hierarchies to construct a foliation of the manifold with an embedded compact
leaf, and obtain the desired lower bound on Euler characteristic by analyzing the
Euler class of the foliation.

Theorem 3.1. [74, Kahn-Markovic] [76, Problem 3.75 (Waldhausen)] Hyperbolic
3-manifolds contain immersed quasi-fuchsian surfaces which are arbitrarily close
to being totally geodesic.

The limit sets of these surfaces in ∂∞H3 can be made arbitrarily close to being
a round circle.

There has been much previous work on this problem, including the following
results:

• Cooper-Long and Li proved that all but finitely many Dehn fillings on a
cusped hyperbolic 3-manifold have essential surfaces [38, Cooper-Long], [84,
Li].

• Masters-Zhang showed that cusped hyperbolic 3-manifolds contain essential
quasifuchsian surfaces (no parabolics) [95, 96, Masters-Zhang]. Together with
[15, Bart 2001], this implies most dehn fillings on multi-cusped manifolds
contain essential surfaces.

• Lackenby proved in 2008 that arithmetic hyperbolic 3-manifolds contain
closed essential immersed surfaces (using work of Lewis Bowen) [81, 80, Lack-
enby].
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4. 3-manifold fundamental group properties

Definition 4.1. A group G is residually finite (RF) if for every 1 6= g ∈ G, there
exists a finite group K and a homomorphism φ : G→ K such that φ(g) 6= 1 ∈ K.

Alternatively,

{1} =
⋂

[G:H]<∞

H. (1)

Examples of residually finite groups include

• finitely generated linear groups [90, Malcev];

• 3-manifold groups [69, Hempel] + Geometrization [104]; and

• mapping class groups of surfaces [55, Grossman].

Definition 4.2. A subgroup L < G is separable if for all g ∈ G − L, there exists
φ : G→ K finite such that φ(g) /∈ φ(L).

Alternatively,

L =
⋂

L≤H≤G,[G:H]<∞

H (2)

Residual finiteness of G is equivalent to 1 < G is separable.

Definition 4.3. A subgroup L < G is weakly separable if for all g ∈ G− L, there
exists φ : G→ K such that φ(L) is finite and φ(g) /∈ φ(L) (K need not be finite).

Example: f L < G is finite, then L is (trivially) weakly separable in G.
Example: Let H �G be a normal subgroup of G, then H is weakly separable

in G. In fact, we may use the quotient ϕ : G → G/H to weakly separate all
elements of G−H from H.

Definition 4.4. A group G is Locally Extended Residually Finite (LERF)
if finitely generated subgroups of G are separable. (local means finitely generated)

Previously well-known examples of LERF groups include

• Zn;

• free groups [67, Hall] and surface groups [110, Scott];

• doubles of certain compression body groups [53, Gitik];

• Bianchi groups PSL(2,Z[
√
−d]) [7, Agol-Long-Reid] and certain other arith-

metic subgroups of PSL(2,C) such as the fundamental group of the Seifert-
Weber dodecahedral space;

• 3-dimensional hyperbolic reflection groups [64, Haglund-Wise].



10 Ian Agol

Figure 7. A link whose complement does not have LERF fundamental group

There are examples of 3-manifold groups which are not LERF which are graph
manifold groups [27, Burns-Karrass-Solitar].

Thurston’s question 15 is whether Kleinian groups are LERF?
For example, the fundamental group of the complement of the link in Figure 7

is not LERF [100, Niblo-Wise].
LERF allows one to lift π1-injective immersions to embeddings in finite-sheeted

covers [110, Scott].

Figure 8. A surface immersed in a 3-manifold with separable fundamental group lifts to
an embedding in a finite-sheeted cover

In fact, Matsumoto showed that there are certain graph manifolds which con-
tain surfaces which do not lift to an embedding in any finite-sheeted covering space
[97, Matsumoto]. These examples highlight the importance of hyperbolicity with
respect to subgroup separability.

4.1. Virtual fibering. Thurston’s virtual fibering question was stated for
hyperbolic 3-manifolds, and does not hold for general 3-manifolds.
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Theorem 4.5 (Przytycki-Wise 2012). If M is an aspherical closed 3-manifold
which is not a graph manifold, then M is virtually fibered.

Svetlov characterized virtually fibered graph manifolds (e.g. unit tangent bun-
dles to closed hyperbolic surfaces are not virtually fibered), but the criterion is
technical to state [116, Svetlov].

Definition 4.6. A group G is Residually Finite Rationally Solvable or
RFRS if there is a sequence of subgroups G = G0 > G1 > G2 > · · · such that
∩iGi = {1}, [G : Gi] < ∞ and Gi+1 = ker{Gi → Zki → (Z/ni)ki} for sequences
ni, ki ∈ N.

Remark: We may assume that Gi�G, in which case G/Gi is a finite solvable
group. Thus, the RFRS condition is a strong form of residual finite solvability.

We remark that if G is RFRS, then any subgroup H < G is as well.
Examples of RFRS groups are free groups, surface groups, Zn and free products

of RFRS groups.
For a 3-manifold M with RFRS fundamental group, the condition is equivalent

to there existing a cofinal tower of finite-index covers

M ←M1 ←M2 ← · · ·

such that Mi+1 is obtained from Mi by taking a finite-sheeted cyclic cover dual to
an embedded non-separating surface inMi. Equivalently, π1(Mi+1) = ker{π1(Mi)→
Z→ Z/kZ}.

This condition implies that M has virtual infinite b1, unless π1(M) is virtually
abelian.

Theorem 4.7. [2, Agol] If M is aspherical and π1(M) is RFRS, then M virtually
fibers.

The proof makes use of sutured manifold theory, the inductive technique
mentioned before for studying foliations of 3-manifolds introduced by Gabai. For
a self-contained proof, see a preprint of [46, Friedl-Kitayama].

Theorem 4.8. [125, Corollary 14.3, Theorem 14.29] Haken hyperbolic 3-manifolds
are virtually fibered.

The theorem includes non-compact hyperbolic 3-manifolds with finite volume
unconditionally.

5. Geometric group theory

Let G be a finitely generated group, with generators G = 〈g1, . . . , gn〉. The Cay-
ley graph of G with respect to the generating set {g1, . . . , gn} is a graph Γ =
Γ(G, {g1, . . . , gn}) with vertex set V (Γ) = G, and edge set E(Γ) = {(g, g · gi)|g ∈
G, 1 ≤ i ≤ n}. So the degree of each vertex g is 2n.
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We may regard Γ as a metric space, by letting edges of Γ have length 1, and
taking the path metric. So the distance d(1, g) between vertices 1, g ∈ V (Γ) is the
smallest k such that g = g±1

i1
· · · g±1

ik
. Then clearly d(h, h · g) = d(1, g), since the

metric is invariant under the left group action of G on Γ(G, {g1, . . . , gn}).
Here is a picture of the Cayley graph Γ(F2, {a, b}) of the two generator free

group F2 = 〈a, b〉 with respect to the free generating set {a, b}:

Geometric group theory is the study of properties of groups from the geometric
properties of the Cayley graph. This notion has some origins in the work of [42,
Dehn 1911] on the word problem for surface groups, but was introduced by [99,
Milnor 1968] who studied the growth of balls in Cayley graphs of groups as a
function of the radius, and [33, Cannon 1984] who studied the Cayley graphs of
hyperbolic manifolds.

If G acts properly and cocompactly on a metric space X (for example, X = M̃
the universal cover, where M is a compact Riemannian manifold, and G = π1(M)),
then some geometric properties of X are reflected in the geometric properties of
the Cayley graph Γ(G, {g1, . . . , gn}). So we may study properties of a group G by
studying the geometric properties of X.

For example, Milnor observed that if the volumes of balls of radius r in X
grow exponentially with r, then the same will hold for the balls in Γ, with volume
replaced by the number of vertices. Exponential growth of balls holds for universal
covers of compact Riemannian manifolds with negative curvature.

Cannon ’84 realized that Cayley graphs of hyperbolic manifolds have a nice
recursive combinatorial structure for the balls of radius r. This notion was then
extended and codified by [54, Gromov 1987] in the notion of a hyperbolic group.

A (Gromov-)hyperbolic geodesic metric space X may be defined by Rips’ “slim
triangle” condition: for points A,B in the metric space, let [A,B] ⊂ X be a
geodesic connecting A and B. Then X is called a δ-hyperbolic metric space if for
any three points A,B,C ∈ X,

[B,C] ⊂ Nδ([A,B] ∪ [A,C]).

For example, hyperbolic space Hn is log(1 +
√

2)-hyperbolic and a tree is 0-
hyperbolic.
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Figure 9. Euclidean vs. slim triangles

If Γ(G, {g1, . . . , gn}) is a δ-hyperbolic metric space for some δ, then G is called a
(Gromov)-hyperbolic group (sometimes also called δ-hyperbolic, word-hyperbolic,
or just hyperbolic group).

Gromov proved many properties of these groups, such as there exists a compact-
ification Γ(G, {g1, . . . , gn})∪∂∞(G), so that ∂∞(G) is independent of the generating
set and Γ (Figure 10).

Figure 10. The compactification of the Cayley graph of a free group 〈a, b〉

Definition 5.1. Let X be a geodesic metric space, and Y ⊂ X. Then Y is
R-quasiconvex in X if for every y1, y2 ∈ Y , the geodesic [y1, y2] ⊂ X lies in an
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R-neighborhood of Y , [y1, y2] ⊂ NR(Y ).

For example, X is δ-hyperbolic if [a, b]∪ [b, c] is δ-quasiconvex for every a, b, c ∈
X.

Let G be a hyperbolic group, with Cayley graph Γ. A subgroup H < G may
be regarded as a subspace H ⊂ G = V (Γ) ⊂ Γ. Then we say H is quasiconvex if
it is R-quasiconvex in Γ for some R. It follows from quasigeodesic stability that
H will be quasiconvex in the Cayley graph with respect to any (finite) generating
set of G.

Motivating examples of hyperbolic groups are Kleinian groups without Z2

subgroups (e.g. fundamental groups of closed hyperbolic manifolds and convex
cocompact Kleinian groups), and more generally fundamental groups of closed
negatively curved manifolds. Motivating examples of quasi-convex subgroups are
quasi-fuchsian surface groups (such as the fundamental groups of the essential
Kahn-Markovic surfaces) in closed hyperbolic 3-manifold groups, and cyclic sub-
groups of arbitrary hyperbolic groups.

Theorem 5.2. [5, 91, Agol, Groves, Manning, Martinez-Pedrosa 2008] If hyper-
bolic groups are RF, then Kleinian groups are LERF

So it may be possible to show that hyperbolic 3-manifold groups are LERF by
showing that Gromov-hyperbolic groups are RF

Caveat: This approach seems quite unlikely to work, since many experts be-
lieve that there are non-RF Gromov-hyperbolic groups.

6. Cube complexes

A topological space X is locally CAT(0) cubed if X is a cube complex such
that putting the standard Euclidean metric on each cube gives a locally CAT(0)
metric (a form of non-positive curvature). Gromov [54] showed that this metric
condition is equivalent to a purely combinatorial condition on the links of vertices
of X, they are flag. A flag simplicial complex has the property that its simplices
are determined by the 1-skeleton: if one sees a k + 1 complete subgraph in the 1-
skeleton, then there is a k-simplex spanning the subgraph. If X is locally CAT(0)
and simply-connected, then it is globally CAT(0).

In a locally CAT(0) cube complex, there are canonical maps of codimension-one
locally geodesic subcomplexes W # X called hyperplanes, which are obtained
by taking the union of midplanes in each cube (Figure 11). The components of the
hyperplane complex correspond to equivalence classes of an equivalence relation
on edges of the complex generated by edges lying on opposite sides of a square.

A locally CAT(0) square complex has the property that the link of each vertex
is a graph of girth ≥ 4 (there are no triangles). In this picture of a square complex,
the link of each vertex is a 5-cycle, so it is a CAT(0) square complex (Figure 12).

A topological space Y is cubulated if it is homotopy equivalent to a compact
locally CAT(0) cube complex X ' Y (equivalently, Y is aspherical and π1(X) ∼=
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Figure 11. A hyperplane is obtained by extending midplanes

Figure 12. A 2-dimensional CAT(0) cube complex and its hyperplanes

π1(Y )). We also say in this case that π1(Y ) is cubulated. We are interested in
3-manifolds which are cubulated.

Remark: If Y = M3, and X ' Y is a CAT(0) cubing, then dimX may be
> 3. Tao Li has shown that there are hyperbolic 3-manifolds Y such that there is
no homeomorphic CAT(0) cubing X ∼= Y [83].

A theorem of [108, Sageev 1995] associates a cocompact action of π1(M) on
a (globally) CAT(0) cube complex if M contains an immersed essential surface.
Sageev’s construction gives a cube complex in which each immersed essential sur-
face in a 3-manifold corresponds to an immersed hyperplane.

For example, Sageev’s construction applied to a fiber surface gives an action
factoring through the Z action on R, with quotient S1. In the case of a geomet-
rically infinite surface in a hyperbolic 3-manifold, Sageev’s construction gives rise
to a crystallographic group action.

Theorem 6.1. [20, Bergeron-Wise 2012] Closed hyperbolic 3-manifolds are cubu-
lated.

Bergeron-Wise give a condition for cubulation. If every geodesic in H3 has the
property that its endpoints in ∂∞H3 are separated by the limit set of a quasifuch-
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Figure 13. For the endpoints of each geodesic, there is a quasifuchsian limit set which
separates the endpoints

H
3

sian surface, then one may use finitely many surfaces so that Sageev’s construction
will give a proper cocompact action on a CAT(0) cube complex (Figure 13).

The surfaces produced by Kahn-Markovic have limit sets which are close to any
given circle, so can separate any pair of points in ∂∞H3. Thus closed hyperbolic
3-manifolds are cubulated.

There were many known examples of cubulated hyperbolic 3-manifolds before
this theorem, e.g. alternating link complements [8, Aitchison-Rubinstein]. Other
examples come from tessellations by right-angled polyhedra:

Figure 14. The dual tessellation to a cube tessellation of H3

6.1. Right angled Artin groups.

Definition 6.2. Let Γ be a simplicial graph. The right-angled Artin group
AΓ (RAAG) defined by Γ has a generator for each vertex v ∈ V (Γ), and relators
vw = wv if (v, w) ∈ E(Γ) is an edge of Γ.

The Salvetti complex SΓ associated to AΓ is a K(AΓ, 1) which is a locally
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Figure 15. Some graphs with their associated RAAGs

Right-angled Artin groups

! = simplicial graph
The right-angled Artin group A!  is given by:

     Generators:    nodes of ! 
         Relators:    vw = wv if [v,w] is an edge of ! 

Examples:

F5  !
2

 *
 F3 !1(M3) F2 x F3 !5

Theorem [Droms] A!  is a 3-manifold group if and only 
if ! is a disjoint union of trees and triangles.

G

Figure 16. Defining the Salvetti complex SΓ

Properties of RAAGs. 

(1)  K(AΓ,1)-spaces: 
Last time: finite cell complex, Salvetti complex
K(π,1)-Conjecture:  Salvetti complex is a K(A,1)-space.

Salvetti complex for AΓ :   SΓ = Sal(AΓ )

WT is finite iff the generators in T all commute (so T 
spans a clique in Γ).  In this case, the Coxeter cell CT 
is a k-cube, k=|T|.

SΓ  = Rose �����������
���	��������
��	�
� Γ ) 

��

a

b

c

d

a

a

bb � . . . .

a

b

c

CAT(0) cube complex, defined by taking a wedge of loops (rose), one for each
generator, and attaching a k-torus for each complete subgraph (k-clique) of Γ
(Figure 16). The 2-skeleton by construction gives a presentation π1(SΓ) ∼= AΓ.

The Salvetti complex has the property that the links of the vertices are flag
simplicial complexes, and therefore these complexes are locally CAT(0).

Examples include

• The free group associated to the trivial graph Γ with no edges, for which SΓ

is a wedge of loops

• The n-torus associated to the complete graph on n vertices Kn, for which
SKn

∼= Tn the n-torus

• The complement of a chain of 4 links (Figure 17).

6.2. Special cube complexes. Special cube complexes are defined in terms
of properties of their hyperplanes. Hyperplanes are embedded and 2-sided. More-
over, there are no self-osculating or inter-osculating hyperplanes (Figure 18). The
midplane of a cube is dual to the edges of the cube it crosses. Thus, we may
regard a hyperplane as an equivalence class of (oriented) edges generated by the
equivalence relation of two edges lying on opposite sides of a square. If the orien-
tation of edges dual to a hyperplane is preserved in an equivalence class, then the
hyperplane is said to be 2-sided. If no adjacent edges of a square are in the same
equivalence class, then the hyperplane is embedded. If equivalent edges share a
common vertex, which is the end or beginning of both edges, then we say that the
hyperplane osculates (Figure 18 (a)). If two hyperplanes osculate at one vertex,



18 Ian Agol

Figure 17. The complement of a chain of 4 links

Examples:  
   AΓ  = free group  (Γ discrete) �
������SΓ  = Rose,  SΓ  = tree
   AΓ = free abelian group  (Γ complete) �
������SΓ  = n-torus,  SΓ  = Rn

∼

∼

Γ  = 

SΓ  = 
aa

bb

and cross at another vertex, then we say that the hyperplanes interosculate (Figure
18 (b)). These are the forbidden configurations in a special cube complex.

Figure 18. Configurations forbidden in a special cube complex

(a) Self-osculation (b) Inter-osculation

The motivating examples of special cube complexes are Salvetti complexes of
RAAGs.

Here’s an example of a special cube complex X homeomorphic to a surface.
The hyperplanes consist of six curves colored blue and red in Figure 19.

The crossing graph Γ(X) of a cube complex X has vertices corresponding to
the hyperplanes of X, and two vertices of Γ(X) are connected by an edge if and
only if the corresponding hyperplanes of X cross (Figure 20).

Theorem 6.3. [62, Haglund-Wise 2007] If X is a special cube complex with hy-
perbolic fundamental group π1X (in the sense of Gromov), then π1X embeds in a
RAAG AΓ(X) and quasi-convex subgroups of π1X are separable.

For the proof, take the crossing graph Γ(X) associated to X and form the
RAAG AΓ(X). There is a natural map from X to the Salvetti complex SΓ(X)

sending every edge dual to a hyperplane to the corresponding edge in the Salvetti
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Figure 19. A special cube complex X homeomorphic to a surface

(a) The hyperplanes (b) The green square complex

Figure 20. The crossing graph of X

complex, and extending over the higher skeleta. This map is a locally isometric
immersion when X is special, and therefore π1(X) ≤ AΓ(X).

For example, applying this construction to SΓ just recovers the identity isom-
etry SΓ → SΓ and the isomorphism π1(SΓ) ∼= AΓ!

The notion of a virtual retract was defined independently by [89, Long-Reid]
and [61, Haglund]:

Definition 6.4. A subgroup L < G is a virtual retract if there exists G′ < G
a finite-index subgroup such that L < G′ and a retract r : G′ → L, meaning
r|L = Id.

E.g. if Λ ⊂ Γ is a subgraph spanned by vertices, there is a natural retract
AΓ → AΛ, setting generators of AΓ corresponding to vertices not in Λ to 1.

Claim: If G is residually finite, and L is a virtual retract of G, then L is
separable in G.

Haglund proved that quasi-convex subgroups of RAAGs are virtual retracts
[61]. This is proved geometrically using “canonical completions” and “canonical
retracts”.

Theorem 6.5. [2, Agol 2008] If M3 is special cubulated, then M is virtually
fibered.

Since M is special cubulated, M ' X, where X is a CAT(0) compact special
cube complex. Thus π1(M) = π1(X) < AΓ(X), a Right-Angled Artin Group. The
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RAAGs have the RFRS property, so it passes to π1(M) and implies that M is
virtually fibered.

We resolved a conjecture of Wise which implies Thurston’s questions.

Theorem 6.6. [125, Conjecture 19.5 Wise] [3, Agol 2012] Locally CAT(0) cube
complexes with hyperbolic fundamental group are virtually special.

The importance of hyperbolicity in the hypotheses of this theorem is made
apparent by the following remarkable theorem:

Theorem 6.7. [26, Burger-Mozes 1997] There are simple groups which are the
fundamental group of a locally CAT(0) square complex whose universal cover is a
product of finite-valence regular trees.

Corollary 6.8. Let M be a closed hyperbolic 3-manifold. Then π1M is LERF,
large, and M virtually fibers.

A group G is large if there is a finite-index subgroup G′ < G which surjects a
free group on 2 generators.

This resolves positively Thurston’s questions 15-18. The next sections will
discuss the background needed in the proof of Theorem 6.6. We remark that the
proof of Theorem 6.6 makes use of ideas introduced in the context of 3-manifold
topology, including hierarchies and relatively hyperbolic Dehn filling. However,
to prove the theorem, it is essential that one work in the category of hyperbolic
groups, rather than specialize to hyperbolic 3-manifold groups which are of interest
for Thurston’s questions.

6.3. Amalgamated products and HNN extensions. Given groups
A,B,C, and injections ϕ1 : C ↪→ A,ϕ2 : C ↪→ B, we may form the amalgamated
product G = A ∗C B, which has a (relative) presentation 〈A,B|ϕ1(c) = ϕ2(c), c ∈
C〉. By combinatorial group theory, A,B,C ↪→ G inject.

Similarly, suppose we have two subgroups B,C < A, such that there is an
isomorphism ϕ : B → C. Then the HNN extension G = A∗ϕ has the presentation
〈A, t|tct−1 = ϕ(c), c ∈ B〉.

For example, all RAAGs are HNN extensions (more generally, any group G
with a surjection G → Z). For any vertex v of a graph Γ defining a RAAG,
one has an associated HNN decomposition, where A is the RAAG AΓ−v, where
Γ− v is the subgraph obtained by deleting all edges adjacent to v. The subgroup
defined by link(v) is both B and C in this case, where ϕ = Id, since the generator
corresponding to v in AΓ commutes with all the elements in Alink(v). This HNN
decomposition may be realized geometrically by splitting the Salvetti complex SΓ

along the hyperplane dual to the generator corresponding to v.

For example, applying this to the complete graph RAAG AKn
, one obtains

the HNN extension Zn = Zn−1∗Id. Another example is a 3-manifold fibered over
S1, A = π1(Fg), B = C = A, and ϕ : B → C is an isomorphism induced by a
homeomorphism f : Fg → Fg. Then π1(Tf ) = A∗ϕ.
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6.4. Quasiconvex hierarchies. The notion of a hierarchy originated in
the study of 1-relator groups (the Magnus hierarchy), and in the study of Haken
3-manifolds (a Haken hierarchy).

Definition 6.9. The class of groups QVH (standing for “Quasiconvex Virtual
Hierarchy”) are defined inductively by

1. 1 ∈ QVH

2. If G = A∗C B or G = A∗ϕ, with A,B,C ∈ QVH and quasiconvex in G, then
G ∈ QVH.

3. Let H < G with [G : H] < ∞. If H ∈ QVH then G ∈ QVH (in particular
with (1), any finite group K ∈ VH).

The class of groups MQH is defined similarly, but we require that C is mal-
normal in G in (2) as well.

It is not hard to show that if M is a hyperbolic 3-manifold, then π1(M) ∈
QVH if and only if M is virtually Haken with a finite-sheeted cover containing an
embedded quasifuchsian surface.

Special cube complexes with hyperbolic fundamental group are also in QVH,
with hierarchy induced by cutting along hyperplanes.

If we have a closed hyperbolic 3-manifold M fibering over S1 with fiber Σ, then
π1(Σ) is not quasi convex in π1(M), so π1(M) is not necessarily contained in QVH.

Theorem 6.10. [125, Wise 2011] Let G ∈ QVH. Then G is virtually special.
That is, there is a CAT(0) cube complex X so that G acts properly cocompactly on
X, and a finite-index subgroup G′ < G such that X/G′ is a special cube complex.

Wise showed that one-relator groups with torsion are in QVH. This resolved
a conjecture of [16, Baumslag 1967].

6.5. Relatively hyperbolic Dehn filling. Recall that the figure eight
knot complement has a complete hyperbolic metric of finite volume. However, the
figure eight knot group G is not a hyperbolic group, since it contains the peripheral
subgroup Z2 = P < G coming from the π1-injective torus that is the boundary of
a tubular neighborhood of the knot.

However, I mentioned that Thurston proved that all but finitely many Dehn
fillings on the figure 8 knot complement are closed hyperbolic 3-manifolds. In fact,
the core of the solid torus of the Dehn filling is a closed geodesic in the hyperbolic
structure on the Dehn filling.

Let Gp/q be the fundamental group of p/q Dehn filling on the figure eight knot
complement. Then P ∩ ker{G → Gp/q} = 〈(p, q)〉. In fact, ker{G → Gp/q} is
freely generated by conjugates of the subgroup 〈(p, q)〉.

The group G is not hyperbolic, but it is relatively hyperbolic. Roughly, this
means that if we take the coset graph of the subgroup P , then this graph is δ-
hyperbolic. This notion was suggested by Gromov, and developed by Bowditch
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[24] and Farb [45]. There’s an extra condition needed called “bounded coset pen-
etration”.

Alternatively, Groves and Manning showed that if one attaches “combinatorial
horoballs” to the cosets of the peripheral group P , then the resulting space is
δ-hyperbolic if and only if G is relatively hyperbolic to P [56].

For example, if F is a free group, and h ∈ F is a primitive element, then F is
hyperbolic relative to 〈h〉.

For a relatively hyperbolic group, such as the figure eight knot complement,
there is an analogue of Thurston’s hyperbolic Dehn filling theorem.

Theorem 6.11. [56, Groves-Manning] [102, Osin] Let G be a group which is
hyperbolic relative to the subgroup P . Then there is a finite set of elements S ⊂
P − {1} so that if P ′ � P is finite-index with S ∩ P ′ = ∅, then the quotient
G/� P ′ � is a hyperbolic group. Moreover, P∩ � P ′ �= P ′.

For example, if G is a hyperbolic group, and h ∈ G is a primitive element,
then G is hyperbolic relative to 〈h〉. Then for all sufficiently large n, G/ �
hn � will also be a hyperbolic group. This result is due to Gromov (or rather
small-cancellation theory), but the relatively hyperbolic Dehn filling theorem vastly
generalizes this result.

6.6. MSQT. We state a special case of the Malnormal Special Quotient
Theorem (MSQT):

Theorem 6.12. [125, Wise 2011] Let G be a virtually special hyperbolic group, and
let h ∈ G. Then there exists N such that G/〈〈hn〉〉 is virtually special hyperbolic
for all N |n.

Remark: The hyperbolicity of G/ � hn � for n large may be proved using
relatively hyperbolic Dehn filling.

The general statement of the malnormal special quotient theorem is a bit
more technical to state. First we need a definition. A collection of subgroups
{H1, . . . ,Hm} < G form an almost malnormal collection provided that for any
element g ∈ G with |Hi ∩ gHjg

−1| =∞, we must have i = j and g ∈ Hi. We state
a strengthened version of the MSQT:

Theorem 6.13. [125, Theorem 12.3, Malnormal Special Quotient Theorem (MSQT)],
[6] Let G be hyperbolic, virtually special, and H = {H1, . . . ,HM} < G a almost
malnormal collection of quasi convex subgroups. Then there exists Ḣi � Hi such
that for any H ′i < Ḣi, such H ′i �Hi and Hi/H

′
i is virtually special hyperbolic, the

quotient group G = G/ << H ′1, . . . ,H
′
m >> is virtually special hyperbolic.

Remarks on the proof: The original version of Wise assumes that [Hi :
H ′i] < ∞. The hypothesis implies that (G,H) is relatively hyperbolic. Using
hyperbolic Dehn filling results of Groves-Manning and Osin, one may conclude
that G is hyperbolic whenever Hi/Ḣi avoids a finite set of elements by Theorem
6.11. The difficult thing is showing that the quotient is cubulated and virtually
special.
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What Wise actually proves is that there is a finite-index normal subgroup
G′ � G which has an induced peripheral structure (G′,H′), so that H′ contains
representatives of each G′ conjugacy class of Hi ∩ G′. Moreover, he shows that a
hyperbolic Dehn filling on (G′,H′) admits a malnormal quasiconvex hierarchy, so
is in MQH. Then he applies his joint work with Haglund [65] and Hsu [70] to
conclude that groups with a malnormal quasiconvex hierarchy are virtually special.
One may then choose the Dehn filling of G′ to be induced from a Dehn filling of
G, and thus the Dehn filling of G will be virtually special. The main difference in
the new proof of this theorem in [6] is that we first form a malnormal hierarchy
of G′ which terminates in copies of H′. This gives a malnormal hierarchy for any
Dehn filling of G′, giving the same conclusion.

The MSQT is the key result that Wise uses to prove that groups in QVH are
virtually special (Theorem 6.10).

6.7. Weak separability of subgroups. The starting point for applying
Wise’s results to prove his conjecture is the following result proved in the appendix
to the paper:

Theorem 6.14. [3, Agol-Groves-Manning, Appendix] Let G be a hyperbolic group,
and H < G a quasi-convex virtually special subgroup. Then H is weakly separable
in G.

The proof of this result is an inductive argument using relatively hyperbolic
Dehn filling. It is a direct generalization of the previously mentioned result (Theo-
rem 5.2) that if hyperbolic groups are residually finite, then quasiconvex subgroups
are separable. The proof is by induction on height of quasiconvex subgroups,
which measures how many conjugates of a subgroup intersect in an infinite group.
So finite groups have height zero, almost malnormal groups have height 1. One
uses relative hyperbolic Dehn filling to reduce the height, and eventually find a
quotient in which the image of the subgroup is finite. Note that the same induc-
tion on height is used by Wise in the proof of Theorem 6.10 in order to reduce the
case of QVH to the MQH case.

Hyperbolicity is used in a crucial way in the proof of this theorem, making it
inapplicable for example to the examples of Burger-Mozes (Theorem 6.7).

7. Outline of the proof of Wise’s conjecture

The proof of Wise’s conjecture (Theorem 6.6) is by induction on dimension. Let
X be a compact locally CAT(0) cube complex with G = π1X hyperbolic. Let
W # X be the immersed hyperplane complex. Then the maximal dimension of
cubes in W is one less than those in X, so by induction we may assume that W
is virtually special. Then we may apply weak separability to conclude under these
hypotheses that

Theorem 7.1. There exists G′′ � G, G/G′′ ∼= G, X̃/G′′ ∼= X such that X has
2-sided embedded acylindrical compact hyperplanes.
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The acylindrical hypothesis is equivalent to the condition that the fundamental
groups of the hyperplanes of X form a malnormal collection. If X → X were a
finite-sheeted cover, then we would be done, since we would have proved that
π1(X) is in QVH. However, the proof of the theorem produces an infinite-sheeted
regular cover.

Definition 7.2 (Crossing Graph). Let Γ(X ) be a graph with vertex set V (Γ(X )) =
W the hyperplanes of X , and edges (W1,W2) ∈ E(Γ(X )) if W1∩W2 6= ∅ or if there
is an essential cylinder going between W1 and W2.

Definition 7.3 (Coloring space). Let [n] = {1, . . . , n}. Let

Cn(Γ) = {c : V (Γ)→ [n]|c(W1) 6= c(W2),∀(W1,W2) ∈ E(Γ)}

denote the space of n-colorings of the graph Γ.

We regard Cn(Γ) as a closed subspace of the Cantor set [n]V (Γ). If deg(Γ) ≤ k,
then Ck+1(Γ) 6= ∅.

A coloring c ∈ Cn(Γ(X )) gives rise to a hierarchy of X : cut along the hyper-
planes colored 1, then the hyperplanes colored 2, ..., and finally the hyperplanes
colored n.

Figure 21. A polyhedron with colored facets

What is left at the ends are stars of the vertices of X , with residues of the col-
orings remaining on the boundary facets. We call these colored polyhedra (Figure
21).

The idea of the proof is to “reverse-engineer” a hierarchy of a finite-sheeted
cover of X, which is modeled on the hierarchy coming from a coloring of X . We
want to find a finite collection of colored polyhedra which is balanced, so that the
number of colorings of a face is the same for the two polyhedra containing the face.

Then we may glue together polyhedra inductively, in order to reverse-engineer
a hierarchy of a finite-sheeted cover, which is therefore virtually special by Wise
(Figure 22).

7.1. Colorings of graphs. I’ll discuss a lemma which is used in the proof
of Wise’s conjecture.
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Figure 22. Gluing polyhedra at the 4th stage of the hierarchy should preserve the lower
stages

Let Γ be a graph of bounded valence ≤ k, and let G be a group acting cocom-
pactly on Γ.

Let Cn(Γ) be the space of all colorings of Γ. Then Cn(Γ) is a compact topo-
logical space, considered as a closed subspace of the Cantor set [n]Γ.

Lemma 7.4. There exists a probability measure µ on Ck+1(Γ) which is G-invariant.

The proof of this lemma proceeds by coloring the vertices V (Γ) randomly with
n-colors, n ≥ k+1. The probability that two endpoints of and edge e ∈ E(Γ) have
the same color is 1/n. One can produce an n−1-coloring of the vertices, by sending
each vertex colored n to the smallest color unused by its neighbors. By induction
then, one produces a measure on k+ 1-colorings of V (Γ) which have probability of
coloring the endpoints of e the same color as ≤ 1/n. Taking a weak-* limit of these
measures, one obtains a G − invariant measure µ on V (Γ)[k+1] which is supported
on the colorings of Γ.

7.2. Colorings and hierarchies. The probability measure is just an ar-
tifice to construct a solution to the gluing equations. We want to reverse engineer
a hierarchy of a finite-sheeted cover. We have a finite (non-compact) hierarchy
associated to the cover X . The probability measure allows us to extract some
finiteness associated to this hierarchy.

7.3. Polyhedra and facets. Let P denote the stars of vertices of X , which
we will call polyhedra. Let F denote the facets of X , which are dual to each edge
of X , and are the facets of the polyhedra P. Each facet F ∈ F will be contained
uniquely in two polyhedra P,Q ∈ P, P ∩ Q = F . There are 4 polygons in the
example in Figure 19 up to the action of G (we won’t draw P ′ and Q′ which are
duplicates of P and Q). As a concrete example, we take a covering space of X
which kills the red curves, and kills the third power of the blue curves, giving a
cover looking like Figure 23. Note that only half of the cover is drawn; the other
half is obtained by doubling along the blue curves to get an infinite surface without
boundary.
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Figure 23. The cover X of the cube complex in Figure 19 and polyhedra and facet

7.4. Supercoloring. Each polyhedron and facet of X will correspond uniquely
to one of X via the covering X → X.

We refine the k + 1-coloring of the hyperplanes W by the coloring of a neigh-
borhood of size j in Γ(X ), where j is the color of a vertex, to get supercolored
hyperplanes. The facets F ∈ F get supercolored by their corresponding hyper-
planes, and polyhedra will be supercolored by their facets.

7.5. Polyhedral gluing equations. The variables for the gluing equa-
tions will be super colored polyhedra, and the gluing equations will say that for
a given super colored facet F , the super colorings of P which induce the same
super coloring of F must equal the super colorings of Q which induce the super
coloring of F . We require that the variables are G-invariant, in which case they
are determined by finitely many variables corresponding to the polyhedra of X (or
G-orbits of super colored polyhedra of X ).

The G-invariant measure µ gives a solution to the gluing equations with non-
negative weights. Then we can get an integral solution to the gluing equations with
non-negative weights, since the equations are linear with integral coefficients. We
take the integral solution to the polyhedral gluing equations, and use them to glue
up a finite-sheeted cover of X, which is “modeled” on the hierarchies associated
to colorings of X .

7.6. Gluing up the hierarchy. We construct a sequence of (usually dis-
connected) finite cube complexes Vj , k + 1 ≥ j ≥ 0, with boundary pattern
{∂1(Vj), . . . , ∂j(Vj)} determined by the unpaired faces colored j. The final stage
V0 will be a finite-sheeted cover of X. The first stage Vk+1 is obtained by taking a
number of copies of each supercolored polyhedron determined by the integral solu-
tion to the gluing equations. In our example, k = 6, so the first stage is V7 (Figure
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Figure 24. The face F has different supercolorings, even though the facet is colored the
same in both colorings

25). If we glued the faces of the polyhedra Vk+1 together preserving colors, then
we would obtain a finite-sheeted branched cover of X. So we have to be careful at
each stage that the gluing extends to an unbranched covering space.

Figure 25. Collection of supercolored polyhedra determined by the solution to the gluing
equations, giving V7

The next stage of the hierarchy Vk is obtained from Vk+1 by gluing the faces
labeled k+1 in pairs along matching supercolored faces (in our example, k+1 = 7
is represented by black, obtaining V6, Figure 26).

We glue V5 from a cover Ṽ6 of V6 by gluing the boundary pattern ∂6V6 (which
in our example is colored yellow Figure 27):

The supercoloring guarantees that the two sides of ∂6V6 have consistently su-
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Figure 26. Gluing V7 to get V6

Figure 27. Taking a cover Ṽ6 of V6 to be able to glue to get V5

(a) V6 (b) Ṽ6

percolored hyperplanes, and therefore is a finite-sheeted cover of the hyperplane in
a representative coloring of X (Figure 27 (a)). The MSQT allows us to pass to a
finite-sheeted cover Ṽ6 in which both sides of ∂6Ṽ6 match by an isometry (Figure
27 (b)).

We obtain Vi from Vi+1 by finding a covering space Ṽi+1 → Vi+1 in which
the boundary pattern ∂i+1Ṽi+1 may be matched up in pairs which reverse the
coorientations and preserve super colorings. Constructing the cover Ṽi+1 requires
another application of Wise’s MSQT.

The cube complex V0 will have no boundary pattern, and thus will give a finite-
sheeted covering space V0 → X and which has by construction has embedded
acylindrical hyperplanes, and therefore a malnormal hierarchy.

One more application of Wise’s theorem (MQH =⇒ virtually special) gives
a cover Ṽ0 → X which is special.
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8. 3-manifold applications

8.1. Non-positive curvature. We state a result that combines the state-
ments of theorems of Liu and Przytycki-Wise:

Theorem 8.1. [86, Theorem 1.1] [105, Corollary 1.4] Let M be an aspherical
compact 3-manifold. The following are equivalent:

1. M admits a complete metric of non-positive curvature

2. M is virtually homotopic to a special cube complex

3. π1(M) virtually embeds in a right-angled Artin group

4. π1(M) is virtually RFRS

In particular, such manifolds are virtually fibered.
The manifolds which do not admit a metric of non-positive curvature are graph

manifolds, and have been characterized by Svetlov in terms of the BKN equations
[115].

A corollary of this result is that if M admits a non-positively curved metric,
then π1(M) is linear (in fact, embeds in GL(n,Z)). It is still unresolved whether
graph manifold groups are linear. It would be remarkable if there are examples of
fibered graph manifolds with non-linear fundamental group, since it would imply
the existence of non-linear mapping class groups.

8.2. Virtual torsion. Let K be a finitely generated abelian group.

Theorem 8.2. [113, Sun 2013] Given M a closed hyperbolic 3-manifold, there is
a finite-sheeted cover M̃ →M such that H1(M) ∼= K ⊕ L.

For each summand Z/NZ of K, Sun constructs an immersed complex CN →M
which has a surface with one boundary component which wraps N times around
a loop, and such that π1(CN ) → π1(M) is an injection, in fact with quasiconvex
image. Take such a complex for each cyclic summand of K, and immerse a wedge
of these complexes in M to get a quasiconvex immersion of a complex C →M such
that π1(C) < π1(M) is quasiconvex. We also have by construction H1(C;Z) ∼= K.
By the virtual retract property, there is a cover M̃ →M such that there is a retract
r : π1(M̃)→ π1(C). Then we have a retract r∗ : H1(M̃)→ H1(C). Therefore, we
have H1(M̃) ∼= H1(C)⊕ ker(r∗) = K ⊕ L, for L = ker(r∗).

Theorem 8.3. [114, Sun 2014] Let M be a closed hyperbolic 3-manifold. For any
closed manifold N , there is a finite cover M̃ → M such that there is a degree 2
map ρ : M̃ → N .

Since the map H3(N ;Z/pZ)→ H3(M̃ ;Z/Z) is an isomorphism for p odd, there
is an embedding of cohomology rings H∗(N ;Z/pZ) → H∗(M̃ ;Z/pZ). Thus, not
only can one achieve arbitrary torsion in covers of a hyperbolic 3-manifold, but
one can also embed any cohomology ring of a 3-manifold, at least with odd order
coefficients (one may also use rational coefficients).
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Figure 28. A homeomorphism defining a Heegaard splitting

↔

8.3. Heegaard gradient. ForM a closed 3-manifold, the Heegaard genus
g(M) is the minimal genus of a surface Σg ⊂M such that Σg bounds handlebodies
to each side (Σg is a Heegaard surface Figure 28). The Heegaard gradient of
M is

∇g(M) = inf
M̃→M finite

2g(M̃)− 2

[π1M : π1M̃ ]

This notion was introduced by Lackenby to probe the virtual Haken conjecture
[78].

If M is fibered, then it is easy to see that ∇g(M) = 0.

Conjecture 8.4. (Lackenby [78]) Let M be a closed hyperbolic 3-manifold. M is
virtually fibered if and only if ∇g(M) = 0.

This conjecture now follows (essentially trivially) from the virtual fibering con-
jecture, and therefore hyperbolic 3-manifolds have ∇g(M) = 0. Note that Ichihara
has shown that Seifert-fibered 3-manifolds with infinite fundamental group have
zero Heegaard gradient, even though some of them are not virtually fibered. It
remains to compute the Heegaard gradients of graph manifolds which are not vir-
tually fibered.

Theorem 8.5. A closed orientable 3-manifold M has ∇g(M) ≤ 0 if and only if
it is prime or M ∼= RP3#RP3.

Proof. First, note that if M is not prime or RP3#RP3, then ∇g(M) > 0. The
sphere decomposition of M gives a graph-of-groups decomposition of π1M with
trivial edge groups. After passing to a finite-sheeted cover, one may assume that
the vertices of this graph all have degree ≥ 3. Then the corank of π1M is > 1
(the corank is the maximal rank free group surjected by π1(M)). As one passes
to further finite-sheeted covers, the corank grows at least linearly with the index,
and therefore the corank gradient is > 0, a fortiori the rank gradient and Heegaard
gradient.

If |π1(M)| <∞, then ∇g(M) < 0 by the Poincaré conjecture, and if |π1(M)| ∼=
Z or Z/2Z ∗ Z/2Z, then ∇g(M) = 0.

Now, suppose M is aspherical. If M has non-zero Gromov norm, then M
virtually fibers, and therefore ∇g(M) = 0 [105]. If M has zero Gromov norm,
then M is a graph manifold.
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If M is Seifert-fibered (with infinite fundamental group), then this was proved
by Ichihara [71]. It is easy to check that this holds for graph manifolds with non-
trivial JSJ decomposition as well. There is a finite-sheeted cover in which each
Seifert piece is homeomorphic to Σ× S1, for some surface with boundary Σ. The
Heegaard genus of each piece is b1(Σ) + 1. By passing to a further cover, we may
assume that the JSJ decomposition is bipartite, so that M = M1 ∪T M2, where
Mi
∼= Σi×S1 (Σi may be disconnected), and T = ∂M1 = ∂M2 is the union of JSJ

tori. Each Mi has a Heegaard splitting of genus b1(Mi), in Mi = Hi ∪ Ci, where
Hi is a union of handlebodies of genus b1(Mi), and T = ∂Mi ⊂ ∂Ci. We may
construct a Morse function on M , which has T as a level set, and induces a perfect
Morse function Mi, which is standard on Hi and Ci (although the restriction to M2

will have the indices flipped). The index 0 critical points lie in H1, so that there are
b0(M1) index 0 critical points, and similarly the index 3 critical points lie in H2,
so there are b0(M2) of them. There are b1(H1) = b1(M1) critical points of index
one in H1, and there are b2(M2) = b1(M2)− b0(M2) critical points of index one in
C2. Similarly, there are b1(H2) = b1(M2) critical points of index two in H2, and
b2(M1) = b1(M1)−b0(M1) critical points of index two in C1. Now, detelescope the
Morse function on M to get a Heegaard splitting of M , then cancel all but one of
the index 0 critical points with index 1 critical points. This gives a Morse function
with b1(H1) + b1(M2) − b0(M2) − b0(M1) = b2(M1) + b2(M2) = b1(Σ1) + b1(Σ2)
index one critical points.

Now we observe that by passing to covering spaces M̃ →M , we may make the
ratio (b1(Σ̃1) + b1(Σ̃2))/[M̃ : M ] arbitrarily close to zero, by unwrapping the S1

direction of M1 and M2 an arbitrarily large amount. This shows that the Heegaard
gradient is zero.

Definition 8.6. Let G be a group, then d(G) is the minimal number of generators
needed to generate G (if G is not finitely generated, set d(G) =∞).

Now, suppose G is a residually finite group. Define

∇d(G) = inf
G̃<G,[G:G̃]<∞

d(G̃)− 1

[G : G̃]
.

If (Gn) is a chain of subgroups Gn+1 < Gn < G with [G : Gn] <∞, define

∇d(G, (Gn)) = lim
n→∞

d(Gn)− 1

[G : Gn]
.

Clearly ∇d(G) ≤ ∇d(G, (Gn)).
LetM be a closed aspherical 3-manifold with π1(M) = G. Then 2d(G) ≤ g(M),

and therefore ∇d(G) = 1
2∇g(M) = 0. It is known that there are manifolds M with

d(G) < 1
2g(M) [22, 85]. If M is hyperbolic, and Gn < G are congruence subgroups,

then it is shown that ∇g(M,Gn) > 0 [78, 88]. As observed by Abert-Nikolov, the
fixed price conjecture of Gaboriau would imply that ∇d(π1M,Gn) = 0 for any
cofinal chain (Gn).

Question: ForM a closed 3-manifold with π1M = G, what is inf [M :N ]<∞ d(π1N)/g(N)?
For further properties of 3-manifold groups following from , we refer to the

comprehensive survey [11, Section 6].
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9. Cubulated groups

Theorem 9.1. [92, Markovic 2012] Let Γ be a word-hyperbolic group, such that
∂∞Γ ∼= S2 (and Γ acts effectively on ∂∞Γ). Suppose moreover that Γ is cubulated.
Then Γ is isomorphic to a Kleinian group. In particular, if Γ is torsion-free, then
Γ = π1(M) for some closed hyperbolic 3-manifold.

This gives a possible approach to Cannon’s conjecture, which is that Γ is a
Kleinian group. One could try to carry out the technique of Kahn-Markovic to
try to find quasiconvex subgroups with limit sets circles in ∂∞Γ which satisfy
Bergeron-Wise’s condition, that one can separate any pair of points in ∂∞Γ by a
circle limit set of a surface subgroup.

We remark that there are many other classes of cubulated hyperbolic groups
to which Theorem 6.6 applies: C ′( 1

6 ) groups [124], random groups at density < 1
6

[101], certain ascending HNN extensions of free groups [29, 60], and isometry groups
of certain polygonal complexes [43, 47].

10. Group theoretic applications

We point out a minor observation regarding Haglund-Wise’s theorem [62]:

Theorem 10.1. Let G act properly cocompactly and virtually specially on a cube
complex X. Then G embeds in a finite extension of a RAAG.

The point is that there is a normal subgroup G′�G such that X/G′ is special.
The embedding X/G′ → SΓ(X/G′) is functorial, in that combinatorial automor-
phisms of X/G′ extend to SΓ(X/G′). Thus, G embeds in an extension of AΓ(X/G′)

by G/G′. Thus, all hyperbolic 3-manifold groups embed in finite extensions of
RAAGs. This observation may have importance, for example, in understanding
the representations of 3-manifold groups, by examining the representations of finite
extensions of RAAGs.

We point out another consequence of virtual specialness. Given a RF group G,
let Ĝ denote its profinite completion.

Definition 10.2. A group G is good if for every finite Ĝ-module M , there is an
isomorphism H∗(Ĝ,M) ∼= H∗(G,M).

Theorem 10.3. Let G be a virtually compact special group. Then G is good.

Proof. This follows by induction from [57, Proposition 3.6]. If G is virtually com-
pact special, then it has a finite-index subgroup which admits a quasi-convex hi-
erarchy. Then G = A ∗C B, where A,B,C are virtually compact special. By
induction, A,B,C are good groups. Also, by [63], the groups A,B,C are virtual
retracts, and therefore are efficient. So by [57, Proposition 3.6], we conclude that
G is good.
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Remark: We cannot apply directly [57, Proposition 3.9], since we don’t know
that G is subgroup separable, only that quasiconvex subgroups are separable.

In general, cubulated hyperbolic groups are not LERF, for example by Rips’
construction [107, 124]. However, quasiconvex subgroups are separable. So it
is natural to ask for which hyperbolic groups are finitely generated subgroups
quasiconvex? This is a strong form of coherence.

Theorem 10.4. Negatively curve square complex groups are LERF.

A negatively curved square complex has vertex links graphs of girth ≥ 5, so that
it admits a CAT(-1) metric making each square a hyperbolic square with angles
2π/5. This follows from a result of McCammond-Wise that negatively curved
square complexes are locally convex [98].

11. Open questions

1. (Long-Reid) Can two Kleinian groups which are non-isomorphic have the
same profinite completion?

Remark: This is equivalent to the question, given two hyperbolic 3-manifold
groups, do they have the same collection of finite quotients?

2. Are compact 3-manifold fundamental groups linear?

Remark: The only aspherical case left is graph manifolds which don’t admit
a non-positively curved metric by Theorem 8.1.

3. Is there an algorithm to detect if a compact cube complex is virtually special?

4. Find a bound on the index of a cover of an aspherical 3-manifold which
is Haken. The bound should be some computable function of some com-
plexity of the 3-manifold, such as the minimal number of tetrahedra of a
triangulation. In principle, there is an algorithm which will find a Haken
cover. The most practical approach is likely to enumerate homomorphisms
ρ : π1(M) → K, K a finite group, and compute H1(π1(M);Q[K]), which is
the homology of the covering space corresponding to ker(ρ) [44].

5. Let M be a 3-manifold with rank(H1(M ;Fp)) ≥ 4. Does M admit a regular

p-cover M̃ with b1(M̃) > 0 ? If this were true, it might yield a more practical
approach to finding Haken covers [80].

6. For any two hyperbolic 3-manifolds M1, M2, are there fibered covers M ′i →
Mi such that there is a non-zero degree map M ′1 →M ′2 which preserves the
fibering?

7. Do closed hyperbolic 3-manifolds contain immersed quasi-fuchsian surfaces
of odd Euler characteristic?
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8. [100, Niblo-Wise] Which 3-manifold groups are LERF? No Seifert-Seifert
gluings in JSJ?

9. Consider a hyperbolic group G which acts properly on a cube complex with
finitely many orbits of hyperplanes, but not necessarily cocompactly. Is G
virtually special?

10. Which knot groups are RFRS?

11. Are braid groups Bn RFRS? Remark: Mapping class groups are not virtu-
ally RFRS in general (cf. [86, Liu]).

12. Does a finite volume hyperbolic 3-manifold M admit a cover which fibers
over S1 with orientable foliation of the pseudo-Anosov map?

13. For M a finite-volume hyperbolic 3-manifold, Γ = π1(M), does rank(Γ) =
rank(Γ̂) = max{rank(Γ/N)|N � Γ, [Γ : N ] < ∞}? Note that M has a
finite-sheeted cover M̃ → M which has this property, in fact such that
rank(π1(M̃)) = rankH1(M̃ ;Z/2Z), since a fibered manifold always has a
finite-sheeted cover with this property.

14. Is there a strengthening of the Malnormal Special Quotient Theorem? Let G
be hyperbolic and cubulated and (G,P ) be relatively hyperbolic. Are there
finitely many elements that we may exclude in P so that any Dehn filling
which avoids these elements is cubulated? This would be a strengthening
of the MSQT (and there is an obvious generalization to multiple peripheral
subgroups).

15. Which cocompact lattices in hyperbolic buildings are cubulated?
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