Math H185 Sarason

May 16, 2006

Final Examination

Open book, open notes. The points for each question are in parentheses.

- 1. (15) (a) For which positive numbers a will at least one value of i^a be real?
 - (b) For which positive a will all values of i^a be real?
- 2. (15) Find the images under the linear-fractional transformation $\varphi(z) = \frac{z-i}{z+i}$ of the right half-plane Re z > 0, the left half-plane Re z < 0, and the sector $\frac{\pi}{4} < \text{Arg } z < \frac{3\pi}{4}$.
- 3. (10) Let the power series $\sum_{n=0}^{\infty} a_n z^n$ have radius of convergence R, where $0 < R < \infty$. Let the power series $\sum_{n=0}^{\infty} b_n z^n$ have radius of convergence ∞ . Prove the power series $\sum_{n=0}^{\infty} a_n b_n z^n$ has radius of convergence ∞ .
- 4. (15) Evaluate

$$\int_{|z|=3\pi} \frac{z^n}{e^z-1} dz, \qquad n=0,1,2,\ldots,$$

where the circle $|z| = 3\pi$ has the counterclockwise orientation.

- 5. (15) Let f be a complex-valued harmonic function in a domain G such that f^2 is also harmonic. Prove either f is holomorphic or \bar{f} is holomorphic. (Suggestion: The complex differential operators $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \bar{z}}$ could be useful here.)
- 6. (15) The entire function f is said to be of exponential type if there are positive constants C and k such that $|f(z)| \leq Ce^{k|z|}$ for all z. Prove that if f is of exponential type then f' is also of exponential type.
- 7. (15) Let the function f be holomorphic in the strip -1 < Im z < 1, real on the real axis, and of positive imaginary part in the strip 0 < Im z < 1.
 - (a) Prove f has negative imaginary part in the strip -1 < Im z < 0.
 - (b) Prove $f'(x) \ge 0$ for x real.
 - (c) Prove f'(x) > 0 for x real.
- 8. (20) Evaluate

$$\int_0^\infty \frac{(\ln x)^2}{1+x^2} dx.$$

Justify each step.

9. (10) Let f be an entire function such that the set $\mathbb{R} \cap f^{-1}(\mathbb{R})$ has a finite limit point. Prove f(x) is real for all real x.