April 14, 2004

Math 118 M. Rieffel Second Midterm Exam

State your answers clearly and fully (with whole sentences, please). Include all your work. (Total points = 40.)

- 1. For each integer n let V_n and W_n be the usual subspaces of $L^2(R)$ coming from the Haar scaling function and wavelet (for dilation by 2).
- 6 a) Explain carefully how the V_n 's and W_n 's are obtained.
- 6 b) Exhibit explicitly the Haar wavelet orthonormal basis for W_2 .
- c) For each n let X_n be the subspace of W_n consisting of those functions which have value 0 outside the interval [0, 5]. Determine the dimensions of X_1 and X_{-1} by finding bases for them. Justify your answer.
 - 2. Fix a positive integer N, and let x and y be complex-valued functions on $\{0, 1, ..., N-1\}$.
- 5 a) Define what is meant by the (discrete) Fourier transform, \hat{x} , of x.
- 5 b) Define the convolution x*y of x and y.
- 10 c) Show that $(x*y)^{\wedge} = \hat{x}\hat{y}$, the pointwise product.