George M. Bergman

Spring 2001, Math 53M

16 February, 2001

60 Evans & 102 Stanley

First Midterm

10:10-11:00 AM

- 1. (54 points, 9 points apiece) Find the following. If an expression is undefined, say so.
- (a) dy/dx, where $x = 2 \sin t$, $y = 3 \cos t$. Express your answer as a function of t.
- (b) The area of the region between the curve whose expression in polar coordinates is $r = e^{\theta}$ ($0 \le \theta \le \pi/2$), the line $\theta = 0$, and the line $\theta = \pi/2$.
- (c) $\lim_{(x,y)\to(0,0)} x/y$.
- (d) The equation of the plane tangent to the surface $z = (x + y)^{1/2}$ at the point where x = 2, y = 7.
- (e) $\frac{\partial^2}{\partial x \partial y}$ (f(x) g(y)), where f and g are differentiable functions. (Express your answer in terms of f and g and their derivatives.)
- (f) $\int_0^1 (\mathbf{j} \times (t^2 \mathbf{i} + e^{-t^2} \mathbf{j} + (\tan t) \mathbf{k}) dt$ (where \mathbf{i} , \mathbf{j} and \mathbf{k} are the standard basis vectors in \mathbb{R}^3).
- 2. (34 points) (a) (20 points) Let f be a continuously differentiable real-valued function on the interval $[-\pi, \pi]$. Show that the space curve given by the vector equation $\mathbf{r}(t) = \langle f(t), \sin t, \cos t \rangle$, $(-\pi \le t \le \pi)$ has the same arc-length as the curve y = f(x) $(-\pi \le x \le \pi)$ in the plane. You may assume formulas for arc length given in Stewart.
- (b) (14 points) Find the length of the curve $\mathbf{r}(t) = \langle \sqrt{(\pi^2 t^2)}, \sin t, \cos t \rangle$, $(-\pi \le t \le \pi)$. You may use the result of part (a) whether or not you have proved it; or you may use any other method that gives the correct answer.
- 3. (12 points) Find equations in *cylindrical* and *spherical* coordinates for the sphere described in Cartesian coordinates by the equation $x^2 + y^2 + (z 1)^2 = 1$.