

MATH 114

PROFESSOR KENNETH A. RIBET

Last Midterm Examination April 8, 2004 12:40–2:00 PM

Name:

SID:

Please put away all books, calculators, electronic games, cell phones, pagers, .mp3 players, PDAs, and other electronic devices. You may refer to a single 2-sided sheet of notes. Please write your name on each sheet of paper that you turn in; don't trust staples to keep your papers together. Explain your answers in full English sentences as is customary and appropriate. Your paper is your ambassador when it is graded.

Problem:	Your score:	Total points
1		7 points
2		8 points
3		8 points
4		7 points
Total:		30 points

1. Suppose that K is a subfield of the complex field $\mathbb C$ and that $\alpha \in \mathbb C$ is algebraic over K. Let E be a field intermediate between K and $K(\alpha)$: $K \subseteq E \subseteq K(\alpha)$. Let

$$p(t) = t^d + a_{d-1}t^{d-1} + \dots + a_1t + a_0$$

be the minimal polynomial of α over E. Show that $E = K(a_0, a_1, \dots, a_{d-1})$.

- 2. Let $\alpha = \sqrt{3 + \sqrt{5}} \approx 2.2882$, and let $K = \mathbb{Q}(\alpha)$. Let L be the splitting field of the minimal polynomial of α .
- (a) Find the Galois group $G = Gal(L : \mathbb{Q})$ of the extension $L : \mathbb{Q}$.

(b) Find all subgroups of G.

(c) For each subgroup H of G, identify the fixed field of H.

3. Let $L = \mathbb{Q}(\sqrt{-3}, \sqrt[3]{2})$ be the splitting field of $t^3 - 2$. How many different fields K (other than \mathbb{Q} and L) satisfy $\mathbb{Q} \subset K \subset L$? For each field K, indicate the degree $[K : \mathbb{Q}]$ and write K in the form $\mathbb{Q}(\alpha)$.

4. Suppose that p(t) is a monic polynomial over \mathbb{Q} and let p'(t) be the derivative of p(t). Suppose that 1 is the highest common factor of p(t) and p'(t) in the ring $\mathbb{Q}[t]$. If n is the degree of p, prove that p(t) has n distinct roots in \mathbb{C} .