
A Randomized Approximate Nearest Neighbors Algorithm

V. Rokhlin

Given a collection of n points x1, x2, . . . , xn in R
d and an integer k << n, the task of

finding the k nearest neighbors for each xi is known as the “Nearest Neighbors Prob-
lem”; it is ubiquitous in a number of areas of Computer Science: Machine Learning,
Data Mining, Artificial Intelligence, etc. The obvious algorithm costs order d n2 log(k)
operations, which tends to be prohibitively expensive in most non-trivial environ-
ments. There exist “fast” schemes, based on various “tree” structures. In very low
dimensions, such methods are quite satisfactory; as the dimensionality increases, the
algorithms become slow, and are replaced with approximate ones (i.e., instead of
nearest neighbors, they find neighbors that are “somewhat close”). At some point,
existing tree-based techniques become ineffective due to the notorious “curse of di-
mensionality”; many Machine Learning techniques can be viewed simply as attempts
to avoid situations where the Nearest Neighbors Problem has to be solved.

I will discuss a randomized algorithm for the approximate nearest neighbor problem
that is effective for fairly large values of d. The algorithm is iterative, and its CPU
time requirements are of the order

T · N · (d · (log d) + k · (d + log k) · (log N)) + N · k2 · (d + log k),

with T the number of iterations performed; the probability of errors decreases ex-
ponentially with T . The memory requirements of the procedure are of the order
N · (d + k).

A byproduct of the scheme is a data structure permitting a rapid search for the k
nearest neighbors among {xj} for an arbitrary point x ∈ R

d. The cost of each such
query is proportional to

T · (d · (log d) + log(N/k) · k · (d + log k)) ,

and the memory requirements for the requisite data structure are of the order

N · (d + k) + T · (d + N).

The algorithm utilizes random rotations and a basic divide-and-conquer scheme, fol-
lowed by a local graph search. We analyze the scheme’s behavior for certain types of
distributions of {xj}, and illustrate its performance via several numerical examples.

1


