UC Berkeley Math 10B, Spring 2014: Midterm 2

Prof. Persson, April 15, 2014

Name:					_	
SID:					_	
Neighbo	rs: Please	$\operatorname{writ}\epsilon$	e the names of	ext to you (or "None"):		
L	eft:				_	
Rig	ght:				Crading	
Section:	Circle y	Circle your discussion section below:			- Grading 1	/ 4
	Time	Sec	Room	GSI	2	/ 4
	MWF 8-9am MWF 9-10am	102 103	4 Evans 41 Evans	Jason Ferguson Jason Ferguson	3	/ 6
	MWF 10-11am	104	39 Evans	Anna Lieb	4	/ 6
	MWF 11-12pm MWF 12-1pm	105 106	39 Evans 41 Evans	Anna Lieb Zvi Rosen	5 ,	/ 6
	MWF~1-2pm	101	45 Evans	Zvi Rosen	6	/ 6
	MWF 2-3pm MWF 3-4pm	107 108	3113 Etcheverry 103 Moffitt	Ralph Morrison Ralph Morrison	7	/ 6
					8	6 /
	Other/none, exp	lain:			/	44

Instructions:

- Closed book: No notes, no books, no calculators.
- Exam time 80 minutes, do all of the problems.
- You must justify your answers for full credit.
- Write your answers in the space below each problem.
- If you need more space, use reverse side or scratch pages. Indicate clearly where to find your answers.
- You do not have to simplify your answers for any question. More specifically, we will accept answers in terms of any combination of [finite] sums, differences, products, quotients, polynomials, exponents, logs, absolute values, trig functions, inverse trig functions, factorials, P(n, k), C(n, k), S(n, k), and $p_k(n)$.

1. (4 points) You roll a die (possibly biased) 100 times, and 20 of the rolls land on 6. Using this, construct a 95% confidence interval for the probability p for rolling a 6.

2. (4 points) X is a random variable that gives

$$-4$$
, 0, and 4

as outputs with probabilities

$$\frac{1}{2}$$
, $\frac{1}{4}$, and $\frac{1}{4}$,

respectively, and can give no other outputs. Find E[X] and Var[X].

- 3. You independently toss three coins and count the number of heads, and repeat this experiment for a total of 120 times. You get 0 heads 12 times, 1 head 38 times, 2 heads 50 times, and 3 heads 20 times. Suppose you want to test the null hypothesis H_0 that all three coins are fair.
 - a) (3 points) Construct a table showing the observed frequencies and the expected frequencies under the null hypothesis H_0 .

b) (3 points) What is the χ^2 -statistic for this data? Describe how to use this to determine if the null hypothesis can be rejected.

4. (6 points) Solve the recursion equation

$$a_0 = 3, \quad a_1 = 0,$$

 $a_n = pa_{n-1} + 2p^2 a_{n-2}, \qquad n = 2, 3, 4, \dots,$

where p is a nonzero constant. Leave your answer in terms of p.

5. (6 points) Evaluate the integral $\int \frac{x^2 + 2x - 2}{x^3 + x^2} dx$.

6. (6 points) Solve the initial value problem $ty'' + 2y' = 12t^2$, y(1) = 1, y'(1) = 1. Hint: Let z = y'. Solve for z, and then use z to solve for y.

7. (6 points) Find all solutions, if any, to the differential equation $e^{-t}y' = (y+1)^2$.

8. a) (3 points) Show that $y_1(t) = t$ and $y_2(t) = e^{2t}$ are both solutions to the differential equation (2t-1)y'' - 4ty' + 4y = 0.

b) (3 points) Solve the initial value problem

$$(2t-1)y'' - 4ty' + 4y = 0$$
, $y(0) = 1$ and $y'(0) = -3$.

(Scratch Paper, Page 1)

(Scratch Paper, Page 2)