UC Berkeley Math 10A, Fall 2014: Midterm 1

Prof. Persson, October 8, 2014

Name:		
SID:		

Section: Circle your discussion section below:

Sec	Time	Room	GSI	Grading	
101	TuTh~8-930am	35 Evans	Noble Macfarlane	1	/ 6
102	TuTh~8-930am	31 Evans	Kevin Donoghue	1	/ 0
103	$TuTh\ 11\text{-}1230pm$	45 Evans	Noble Macfarlane	2	/ 6
104	TuTh 11-1230pm	41 Evans	Kevin Donoghue	3	/ 5
105	TuTh $1230\text{-}2pm$	61 Evans	James McIvor	J	/ 0
106	TuTh $1230\text{-}2pm$	55 Evans	Adam Merberg	4	/ 5
107	TuTh $2\text{-}330\text{pm}$	61 Evans	James McIvor	5	/ 3
108	TuTh $2\text{-}330\text{pm}$	55 Evans	Shamil Shakirov	0	/ 0
109	TuTh~330-5pm	39 Evans	Adam Merberg	6	/ 4
110	TuTh $330\text{-}5\text{pm}$	47 Evans	Markus Vasquez		/29
111	TuTh~5-630pm	47 Evans	Markus Vasquez		/ 49
112	TuTh~5-630pm	122 Latimer	Shamil Shakirov		
Othe	r/none, explain:				

Instructions:

- Closed book: No notes, no books, no calculators.
- Exam time 50 minutes, do all of the problems.
- You must justify your answers for full credit.
- Write your answers in the space below each problem.
- ullet If you need more space, use reverse side or scratch pages. Indicate clearly where to find your answers.

1. (6 points) Find each of the following limits.

a)
$$\lim_{x \to -\infty} \frac{x(3x-4)+2}{5x^2-10}$$

b)
$$\lim_{x \to -3} \frac{x^2 - 9}{x^2 + 2x - 3}$$

c)
$$\lim_{x \to 1} \frac{\frac{1}{1+x^4} - \frac{1}{2}}{x-1}$$

2. (6 points) Differentiate each function.

a)
$$f(x) = (2x^3)^4$$

b)
$$f(x) = \frac{1}{x} + x^2 e^x$$

c)
$$f(x) = \ln\left(\arctan\sqrt{\frac{x}{4}}\right)$$

3. (5 points) Find the equation of the line tangent to the curve

$$\sin(4x+y) = 2x - 2y$$

at the point (π, π) .

 $\mathbf{4.}$ (5 points) Find the absolute minimum and absolute maximum of the function

$$f(x) = x^3 - 3x^2 + 1$$
 on the interval $-\frac{1}{2} \le x \le 4$.

$$-\frac{1}{2} \le x \le 4$$

5. (3 points) Suppose that the point (2,3) is on the graph of y = g(x), and that the equation of the line tangent to the graph of y = g(x) at this point is y = -2x + 7. If you wanted to find a solution to g(x) = 0 by Newton's method and you used $x_1 = 2$ as your initial guess, what would x_2 be?

6. (4 points) Find the *n*th order Taylor polynomial of $f(x) = e^{2x}$ at x = a, where a is any real number. Write your answer using \sum notation.