Final Exam for MATH 125A

Fall 2008, December 19, UC Berkeley

Problem 1 [20P]

(a) Consider the 3-place truth function $f: \{T, F\}^3 \to \{0, 1\}$ given by

A_0	A_1	A_2	$f(A_0, A_1, A_2)$	
\overline{T}	\overline{T}	T	T	
T	T	F	F	
T	$\boldsymbol{\mathit{F}}$	T	F	
T	\boldsymbol{F}	$\boldsymbol{\mathit{F}}$	T	Find a formula $\varphi = \varphi(A_0, A_1, A_2)$ such
$\boldsymbol{\mathit{F}}$	T	T	F	that $f_{\varphi} = f$, where f_{φ} is the truth func-
$\boldsymbol{\mathit{F}}$	T	$\boldsymbol{\mathit{F}}$	F	tion derived from φ .
$\boldsymbol{\mathit{F}}$	\boldsymbol{F}	T	F	You can use the connectives \land (AND), \lor
$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	$F \mid$	T	(OR) , \rightarrow , and \neg .

(b) Does there exist a propositional formula φ such that φ is a contradiction and there exists a propositional variable A_i for which the following holds: If we replace *every* occurrence of A_i in φ by $(\neg A_i)$, we obtain a new formula φ' that is a tautology?

Give an example or show that such a formula does not exist.

Problem 2 [25P]

- (a) Suppose $\mathcal{M} = (M, I)$ is an $\mathcal{L}_{\mathcal{A}}$ -structure. State what it means that a subset $Y \subseteq M$ is definable from parameters in $X \subseteq M$.
- (b) Let $\mathcal{A} = \{+, -, \cdot, \underline{0}, \underline{1}\}$, where $+, -, \cdot$ are binary function symbols, and $\underline{0}, \underline{1}$ are constant symbols. Consider the $\mathcal{L}_{\mathcal{A}}$ -structure $\mathbb{R} = (\mathbb{R}, +, -, \cdot, 0, 1)$.
 - Show that the set $\{x \in \mathbb{R} : x > 0\}$ is definable in \mathbb{R} (without parameters). Infer that the relation $\{(x,y) \in \mathbb{R}^2 : x < y\}$ is definable in \mathbb{R} , too.
 - Show that for every rational number q, the set $\{q\}$ is definable without parameters in \mathbb{R} .
 - Show that for any two $a, b \in \mathbb{R}$, $a \neq b$, the 1-types of a and b in \mathbb{R} are different.
- (c Extra Credit) Give an example of a finite language $\mathcal{L}_{\mathcal{A}}$ and an infinite $\mathcal{L}_{\mathcal{A}}$ -structure \mathcal{M} with exactly four definable (without parameters) subsets of M. Justify your answer.

Problem 3 [15P]

Using the axiom system for first order logic introduced in class (axioms are given below), show that for every term τ in \mathcal{L} ,

$$\vdash (\tau = \tau),$$

i.e. there exists a proof of $(\tau = \tau)$ that uses only the axioms and consequences thereof. Justify your steps.

Problem 4 [40P]

- (a) State the *Compactness Theorem* for first order logic.
- (b) Suppose $T_1 \subseteq T_2 \subseteq T_3 \subseteq \ldots$ is a strictly increasing sequence of $\mathcal{L}_{\mathcal{A}}$ -theories. Suppose further that each T_i is closed under logical consequences, i.e. for each i, if $T_i \models \sigma$ for some sentence σ , then $\sigma \in T_i$.
 - Show that $\bigcup_{i\in\mathbb{N}} T_i$ is consistent.
 - Show that $\bigcup_{i\in\mathbb{N}} T_i$ is not finitely axiomatizable, i.e. there does not exist a finite set of sentences Γ such that $\mathcal{M} \models \Gamma$ if and only if $\mathcal{M} \models \bigcup_{i\in\mathbb{N}} T_i$.
- (c) State the definition of a *complete theory*.
- (d) Give an example of a language $\mathcal{L}_{\mathcal{A}}$ and an $\mathcal{L}_{\mathcal{A}}$ -theory that is complete.

(e – Extra Credit) Is the theory $\bigcup_{i \in \mathbb{N}} T_i$ from part (b) necessarily complete? Prove or give a counterexample.

Axiom System for First Order Logic

The set of logical axioms, denoted Δ , is the smallest set of \mathcal{L} formulas which satisfies the following closure properties.

- 1. (Instances of Propositional Tautologies) Suppose that ϕ_1 , ϕ_2 and ϕ_3 are \mathcal{L} formulas. Then each of the following \mathcal{L} formulas is a logical axiom:
 - (a) $((\phi_1 \to (\phi_2 \to \phi_3)) \to ((\phi_1 \to \phi_2) \to (\phi_1 \to \phi_3)))$
 - (b) $(\phi_1 \rightarrow \phi_1)$
 - (c) $(\phi_1 \to (\phi_2 \to \phi_1))$
 - (d) $(\phi_1 \rightarrow ((\neg \phi_1) \rightarrow \phi_2))$
 - (e) $(((\neg \phi_1) \rightarrow \phi_1) \rightarrow \phi_1)$
 - (f) $((\neg \phi_1) \rightarrow (\phi_1 \rightarrow \phi_2))$
 - (g) $(\phi_1 \rightarrow ((\neg \phi_2) \rightarrow (\neg (\phi_1 \rightarrow \phi_2))))$
- 2. Suppose that ϕ is an \mathcal{L} formula, τ is a term, and that τ is substitutable for x_i in ϕ . Then

$$((\forall x_i \phi) \to \phi(x_i; \tau)) \in \Delta.$$

3. Suppose that ϕ_1 and ϕ_2 are \mathcal{L} formulas. Then

$$((\forall x_i(\phi_1 \to \phi_2)) \to ((\forall x_i \phi_1) \to (\forall x_i \phi_2))) \in \Delta.$$

4. Suppose that ϕ is an \mathcal{L} formula and that x_i is not a free variable of ϕ . Then

$$(\phi \to (\forall x_i \phi)) \in \Delta.$$

- 5. For every variable x_i , $(x_i = x_i) \in \Delta$.
- 6. Suppose that ϕ_1 and ϕ_2 are \mathcal{L} formulas and that x_i is substitutable for x_i in ϕ_1 and in ϕ_2 .

If
$$\phi_2(x_i; x_j) = \phi_1(x_i; x_j)$$
,
then $((x_i \triangleq x_j) \to (\phi_1 \to \phi_2)) \in \Delta$.

7. Suppose that $\phi \in \Delta$. Then $(\forall x_i \phi) \in \Delta$.