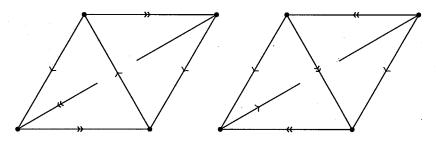
Final Exam - Algebraic Topology

Christian Zickert

Let K be the topological space obtained by gluing together the faces of the two 3-simplices below, using the unique orientation preserving linear identification maps respecting the arrows.



- (1) Show that there is no vertex ordering making the identification maps order preserving. Conclude that the gluing does not produce a Δ -complex structure on K.
- (2) Show that K has a CW-complex structure with 1 zero-cell, 2 one-cells, 4 two-cells and 2 three-cells.
- (3) Show that the fundamental group of K is $\mathbb{Z}/5\mathbb{Z}$.
- (4) Write down the cellular chain complex and show that the homology groups of K are given by

$$H_i(K) = egin{cases} \mathbb{Z} & ext{for } i = 0 \ \mathbb{Z}/5\mathbb{Z} & ext{for } i = 1 \ \mathbb{Z} & ext{for } i = 2, 3. \end{cases}$$

- (5) Compute the cohomology groups $H^*(K)$ and $H^*(K; \mathbb{Z}/p\mathbb{Z})$ for each prime number p.
- (6) Let x_0 denote the zero-cell. Show that x_0 has a neighborhood homeomorphic to the cone on a torus.

- (7) Show that $M = K \setminus \{x_0\}$ is a 3-manifold and that M is homotopy equivalent to a 3-manifold \overline{M} with boundary a torus.
- (8) Show that $H_3(\bar{M}, \partial \bar{M}) = \mathbb{Z}$ and use this to prove that M and \bar{M} are orientable.
- (9) Compute $H_*(M)$ and $H^*(M)$.
- (10) For each natural number n, determine the number of connected, abelian n-sheeted covers of M.