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Math 113: Midterm 2
Prof. Beth Samuels
November 15, 2005

Name :

Student ID Number:

Instructions: This is a closed-book test. Each problem is worth 20 points. Read the
questions carefully, and show all your work. Al work should be done on the exam paper.
Additional white paper is available if needed. Good luck. ‘
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(1) Let G be the group of rotations of a cube. Consider G acting on the set of vertices,
edges, and faces. Use the Counting Formula to compute the order of ¢ in these three
different ways.

(2) (a) Let @ be a group. Define the conjugacy classes and the class equation of
G.
(b} Determine the class equation for D,.
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(3) Let |G| = p*q, where p and g are prime numbers. Show that either G has a normal
Sylow p-subgroup, a normal Sylow g-subgroup, or p = 2 and ¢ = 3.

(4) Classify groups of order 26. Prove your answer.
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(5) (a) Define-the commutator of two elements in a group, and define the free
abelian group on {z,y}.
(b) Let G be a group. The commutator subgroup G’ of & is the smallest subgroup
containing all the commutators of G- Let NV be a normal subgroup of G. Prove
that G/N is abelian if and only if G C N. '

(6} (a) Define a field and an ideal of a ring.
(b) Let R be a ring which is not the zero-ring. Show that R is a field if and only if
R has exactly two ideals.
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(7) Let R be a ring, and let I and J be two ideals in R. Show that 7'M .J is an ideal in &.



