Math 74, Sec. 2, Instructor: Walter Kim Final Exam (80 pts.), Tuesday, December 20, 2005

Name:

Problem	Max. points	Your Points
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	·
Total	80	

5106422416

1. (10 pts.) (a) State the Well-Ordering Principle.

(b) Prove using the Well-Ordering Principle that $\sqrt{2}$ is not in \mathbb{Q} . Here by $\sqrt{2}$ we mean the positive real number satisfying the equation $x^2-2=0$. (Some hints: Keep in mind that since 1<2<4, we know that $1<\sqrt{2}<2$. You will probably want to consider the set of positive integers n such that $n\sqrt{2}$ is an integer.)

2. (10 pts.) (a) State the Chinese Remainder Theorem.

(b) Is there a solution for the equations $x \equiv 1 \pmod 2$ and $x \equiv 2 \pmod 4$? Why does this not contradict the Chinese Remainder Theorem?

(c) Is there a solution for the equations $x \equiv 1 \pmod{2}$ and $x \equiv 3 \pmod{4}$?

2. (con't) (d) Prove the existence of the solution in the Chinese Remainder Theorem. (You are not asked to prove the uniqueness part.)

UCB MAIN LIBRARY

(scratch paper)

- 3. (10 pts.) Consider the map $\varphi: \mathbb{Z}/5\mathbb{Z} \to \mathbb{Z}/5\mathbb{Z}$ given by $\varphi([n]) = [2n]$.
- (a) Write down where φ takes each of the elements of $\mathbb{Z}/5\mathbb{Z}$.

(b) Show that φ preserves addition.

(c) Show that φ DOES NOT preserve multiplication.

4. (10 pts.) Let m be an integer ≥ 2 .

5106422416

(a) Show that addition in $\mathbb{Z}/m\mathbb{Z}$ is commutative. (You can use any properties you know about \mathbb{Z} .)

(b) Show that if m is prime, then all elements of $\mathbb{Z}/m\mathbb{Z}$ that are not the 0 element have a multiplicative inverse.

4. (con't) (c) Show that if m is not prime, then $\mathbb{Z}/m\mathbb{Z}$ is not a field. (Hint: Find a nonzero element of $\mathbb{Z}/m\mathbb{Z}$ that does not have a multiplicative inverse. Maybe a divisor of m will work.)

- 5. (10 pts.) Let F be a field.
- (a) Let $x \in F$ with $x \neq 0$. Show that the multiplicative inverse of x is unique.

(b) Show that $0 \cdot x = 0$ for all $x \in F$. (Hint: Use the fact that 0 + 0 = 0 which is true because why?)

6. (10 pts.) Consider the sequence

 $2, 4, 10, 28, 82, 244, \dots$

given by $x_n = 3^n + 1$.

(a) Does the sequence $(x_n)_{n\in\mathbb{N}}$ converge with respect to the 3-adic absolute value? If so, to what? Prove your answer.

- 6. (con't) We will now show together that the sequence $(x_n)_{n\in\mathbb{N}}$ given by $x_n=3^n+1$ does not converge with respect to the usual absolute value. We will do this by contradiction. Suppose by contradiction that $(x_n)_{n\in\mathbb{N}}$ converges to $L\in\mathbb{Q}$. We can write $L=\frac{a}{b}$ where $a\in\mathbb{Z},\,b\in\mathbb{N}^*$ and $\gcd(a,b)=1$.
- (b) Show that there is some $c \in \mathbb{N}$ such that for all $n \geq c$, $|x_n L| > 1/100$. (Hint: c = |a| works. Show why this is true and you are done with this part. Look at the cases when $a \geq 0$ and a < 0.)

(c) What is the definition of $(x_n)_{n\in\mathbb{N}}$ conveges to $L\in\mathbb{Q}$. I'll give you part of it: Given $p\in\mathbb{N}^*$, there exists an $m\in\mathbb{N}$ such that (fill in the big blank) <1/p.

- 6. (con't) So we know from part (b) that there is some p, namely p = 100 such that there is no m that works. This contradicts the assumption that $(x_n)_{n \in \mathbb{N}}$ converges to L. Thus $(x_n)_{n \in \mathbb{N}}$ does not converge to anything.
- (d) Explain why there is no m that works for p=100. (Hint: If you have an $m \in \mathbb{N}$, there is some $n \geq m$ such that $n \geq c$.)

7. (10 pts.) Let p be a prime. Show that the p-adic absolute value $|\cdot|_p$ on $\mathbb Q$ satisfies

$$|x+y|_p \leq \max(|x|_p,|y|_p)$$

for all $x, y \in \mathbb{Q}$. I will start the proof for you: Let $x, y \in \mathbb{Q}$. We can write $x = \frac{c}{d} \cdot p^{\alpha}$ where $c \in \mathbb{Z}$, $d \in \mathbb{N}^*$, $\alpha \in \mathbb{Z}$, p does not divide c, and p does not divide d. We can write $y = \frac{c}{f} \cdot p^{\beta}$ where $e \in \mathbb{Z}$, $f \in \mathbb{N}^*$, $\beta \in \mathbb{Z}$, p does not divide e, and p does not divide f. (Hint: Evaluate $|x|_p$, $|y|_p$, and $|x+y|_p$. Then look at the three cases: $\alpha > \beta$, $\alpha > \beta$, $\alpha = \beta$.)

8. (10 pts.) (a) Show that every $z \in \mathbb{C}$ with $z \neq 0$ has a multiplicative inverse. In otherwords, find the multiplicative inverse of $z = x + iy \in \mathbb{C}$.

(b) Show that every $z=x+iy\in\mathbb{C}$ has a square root. In otherwords, find an element $w=u+iv\in\mathbb{C}$ such that $w^2=z$.

(c) Show that every polynomial of the form $ax^2 + bx + c$ where $a, b, c \in \mathbb{C}$ has a root in \mathbb{C} . (Hint: $(-b + \sqrt{b^2 - 4ac})(2a)^{-1}$ is a root. Argue why this is a complex number if a, b, and c are complex numbers.)