Midterm II/math110/fall 2003 LIU time: Oct 14, 2:10-3:30pm Total Score: 100%

- 1. (15%) Determine if each of the following statements is true or false. Give a brief explanation for each of your assertions.
- (a). Let V and W be two finite dimensional vector spaces over \mathbf{R} , then $\mathcal{L}(V,W)$ and $\mathcal{L}(W,V)$ are isomorphic. (4%)
- (b). The null space of a linear transformation $T: V \mapsto V$, N(T) is always contained in the range of T, R(T), i.e. $N(T) \subset R(T)$. (4%)
 - (c). There can be no 'onto' linear transformation from \mathbf{R}^{10} to $P_{10}(\mathbf{R})$. (3%)
- (d). All the n-linear functions $\delta: \mathbf{M}_{n\times n}(\mathbf{R}) \mapsto \mathbf{R}$ are equal to the determinant function $\det: \mathbf{M}_{n\times n}(\mathbf{R}) \mapsto \mathbf{R}$. (4%)
- 2. (15%) Let $T: P_3(\mathbf{R}) \mapsto \mathbf{R}^4$ be defined by T(f) = (f(0), f(1), f'(0), f'(1)). Let β , γ be the standard ordered bases of $P_3(\mathbf{R})$ and \mathbf{R}^4 .
 - (i). Calculate $[T]^{\gamma}_{\theta}$. (7%)
 - (ii). Is T an isomorphism? If yes, prove it. If not, explain to us why not. (8%)
 - 3. (18%)
- (i). Prove that a 1-1 linear transformation $T \in \mathcal{L}(V, W)$, $\dim(V) = \dim(W) < \infty$, must be an isomorphism. (9%)
- (ii). Let V be a finite dimensional vector space and let $T \in \mathcal{L}(V)$. Suppose that for some ordered basis β , $det([T]_{\beta}) = 0$,
 - (a). prove that $det([T]_{\gamma}) = 0$ for an arbitrary ordered basis γ of V. (5%)
 - (b). prove that null(T) > 0. (4%)
 - 4. (12%) Let $V \subset P_2(\mathbf{R})$ be the subspace $\{f | f \in P_2(\mathbf{R}), f(1) = 0\}$.
 - Let $\beta = {\mathbf{v}_1 = x 1, \mathbf{v}_2 = x^2 x}$ be an ordered basis of V.
- (i). Let $\gamma = \{-1\mathbf{v}_1 + a\mathbf{v}_2, b\mathbf{v}_1 + 2\mathbf{v}_2\}$, $a, b \in \mathbf{R}$, be another ordered basis. Calculate the change of coordinate matrix from β to γ by its definition. (4%)
- (ii). Let a=-2, b=-1 in (i). Suppose that a linear transformation $T:V\mapsto V$ satisfies $[T]_{\gamma}=\begin{pmatrix} 1&2\\3&4 \end{pmatrix}$. Please determine $[T]_{\beta}$. (8%)
 - 5. (25%)
- (a). State and prove the dimension theorem for a linear transformation $T \in \mathcal{L}(V, W), \ dimV < \infty$. (15%)
- (b). Let $V = \mathbf{M}_{2\times 2}(\mathbf{R})$. Let $\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ be an ordered basis of V. Determine the dual basis β^* of V^* . (10%)
- 6. (15%) Let V, W, U be three finite dimensional vector spaces and let α, β, γ be ordered bases for V, W and U, respectively. Prove that for all $S \in \mathcal{L}(W, U)$ and $T \in \mathcal{L}(V, W)$,

$$[ST]^{\gamma}_{\alpha} = [S]^{\gamma}_{\beta} [T]^{\beta}_{\alpha}$$

Extra Credit: (10%) Let D an $n \times n$ diagonal matrix whose (i, i) entry is equal to $i, 1 \le i \le n$. Define a linear transformation $T: \mathbf{M}_{n \times n}(\mathbf{R}) \mapsto \mathbf{M}_{n \times n}(\mathbf{R})$ by T(A) = DA - AD. Find a basis of N(T) and determine rank(T).