MATHEMATICS 170 — MIDTERM FO3 EVANS

Problem 1. Start with the basic feasible vector $x^T = [0, 1, 1]$ and then use the *simplex tableau method* to solve

(P)
$$\begin{cases} \text{minimize } x_1 + x_2 + 3x_3, \text{ subject to the constraints} \\ x_1 + x_3 = 1, x_2 + x_3 = 2, x_1 \ge 0, x_2 \ge 0, x_3 \ge 0. \end{cases}$$

In particular, demonstrate how to set up the initial tableau and then how to modify it by pivoting, to get an optimal solution.

Problem 2. The vector $x^T = \left[\frac{4}{3}, \frac{10}{3}, 0, 0\right]$ is an optimal solution of:

(P)
$$\begin{cases} \text{minimize } 3x_1 + 2x_2, \text{ subject to the constraints} \\ 2x_1 + x_2 - x_3 = 6, \ x_1 + 2x_2 - x_4 = 8, \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0. \end{cases}$$

Use the equilibrium equations to find an optimal solution $y^T = [y_1, y_2]$ of the dual problem (D).

Problem 3. Prove that if there exists a solution x of

$$(*) Ax = b, x \ge 0,$$

then there exists a basic solution.

(Hint: Take a solution x of (*) with the fewest number of nonzero components. If the columns $\{a^{\alpha}, a^{\beta}, \dots, a^{\sigma}\}$ of A corresponding to the nonzero entries in x are dependent, we can find $\{\theta_{\alpha}, \theta_{\beta}, \dots, \theta_{\sigma}\}$, not all zero, such that $\theta_{\alpha}a^{\alpha} + \theta_{\beta}a^{\beta} + \dots + \theta_{\sigma}a^{\sigma} = 0$. Finish the proof from here.)

Problem 4. Let A be an $m \times n$ matrix.

- (a) State the Farkas alternative (ii) to the assertion
 - (i) $Ax = b, x \ge 0$ has a solution x.
- (b) Use the Separating Hyperplane Theorem to prove that either (i) or
- (ii) holds, but not both.

(Hint: You may assume that the finite cone $C = \{Ax \mid x \ge 0\}$ is closed and convex.)

Problem 5. Suppose A is a symmetric $n \times n$ matrix; that is, $A^T = A$. Consider the linear programming problem:

(P) minimize $b \cdot x$, subject to Ax = b, $x \ge 0$.

Show that any feasible x is in fact optimal.