P. Vojta Fall 2003

Math 113 First Midterm

50 minutes

- 1. (20 points) Carefully define the following. (In each definition you may use without defining them any terms or symbols that were used in the text prior to that definition.)
 - (a). Function $f: X \to Y$.
 - (b). The inverse of a function $f: X \to Y$.
 - (c). Group.
 - (d). Cyclic subgroup.
 - (e). The intersection of a collection of sets.
- 2. (14 points)
 - (a). Solve for x, in an arbitrary group G:

$$ab^2xc^{-2} = a^2da .$$

- (b). Determine (in a more concise form) the subgroup H of \mathbb{Z} given by $H = \langle 30, 50, 75 \rangle$.
- 3. (14 points)
 - (a). Let S be an associative binary algebraic structure with two-sided identity e. Show that if an element $x \in S$ has a left inverse x' and a right inverse x'', then x' = x''.
 - (b). Let S and S' be binary algebraic structures. Let $x \in S$ be an element with the property that xy = yx for all $y \in S$. Show that if $\phi \colon S \to S'$ is an isomorphism of binary algebraic structures, then $x' = \phi(x) \in S'$ must have the property that x'y' = y'x' for all $y' \in S'$.
- 4. (7 points) Draw a Cayley digraph of the group \mathbb{Z}_5 with generating set $\{1,3\}$.
- 5. (20 points) Let G be a cyclic group with generator a. Show that if G has finite order n, then G is isomorphic to $\langle \mathbb{Z}_n, +_n \rangle$.