

## **MATH H110**

## PROFESSOR KENNETH A. RIBET

First Midterm Exam September 29, 2003 12:10–1:00 PM

Name:

SID:

Please put away all books, calculators, electronic games, cell phones, pagers, .mp3 players, PDAs, and other electronic devices. You may refer to a single 2-sided sheet of notes. Please write your name on each sheet of paper that you turn in; don't trust staples to keep your papers together. Explain your answers in full English sentences as is customary and appropriate. Your paper is your ambassador when it is graded.

| Problem: | Your score: | Total points |
|----------|-------------|--------------|
| 1        |             | 10 points    |
| 2        |             | 10 points    |
| 3        |             | 10 points    |
| Total:   |             | 30 points    |

1. Suppose that F is the field of rational numbers. Let  $V = \mathsf{P}_{100}(F)$  be the F-vector space consisting of polynomials over F of degree  $\leq 100$ . Let  $T = \frac{d}{dx} \colon V \to V$  be the differentiation operator  $\sum_{i=0}^n a_i x^i \mapsto \sum_{i=1}^n i a_i x^{i-1}$ . Find the nullity and the rank of T.

Suppose now instead that F is the field  $Z_5$  consisting of the integers 0, 1, 2, 3 and 4 mod 5. What are the nullity and the rank in this case?

2. Let V and W be vector spaces over F, with V finite-dimensional. Let X be a subspace of V. Establish the surjectivity ("onto-ness") of the natural map  $\mathcal{L}(V,W) \to \mathcal{L}(X,W)$  that takes a linear transformation  $T \colon V \to W$  to its restriction to X.

3. Let V be a finite-dimensional vector space over F. Let  $V^*$  be the vector space dual to V. Let  $T\colon V^*\to F$  be a linear map. Show that there is a vector  $x\in V$  such that T(f)=f(x) for all  $f\in V^*$