Math 128a Midterm Exam 1 K. Hare September 26, 2003

NAME (printed)	:		
		(Family Name)	(First Name)
Signature	:		
Student Number	:		

- (1) Do NOT open this test booklet until told to do so
- (2) Do ALL your work in this test booklet
- (3) Show ALL your work
- (4) Check that there are 6 problems and 7 pages (including this one)
- (5) NO CALCULATORS
- (6) No pushing, biting, or hitting

1	2	3	4	5	6	TOTAL

1 a: (4 pts) Let f(x) be a continuous function on [2,3]. Further, assume that for all $x \in [2,3]$ that $f(x) \in [2,3]$. Prove that f(x) has a fixed point $p \in [2,3]$.

b: (3 pts) Further assume to part (a) that $|f'(x)| \leq \frac{1}{11}$ for all $x \in [2,3]$. How many steps of the fixed point method are needed to find the fixed point of f(x) between [2,3] to an accuracy of 10^{-3} .

2 a: (3 pts) Let g(x) = ax + b for some fixed non-zero constants a and b. How many steps of Newton's method are needed to find a root of g(x) to an accuracy of 10^{-6} . Why?

b: (4 pts) Give an example of a, b and c, such that when using three digits rounding,

$$a + (b+c) \neq (a+b) + c$$

3 a: (3 pts) Define what it means for a sequence $\{p_n\}_{n=0}^{\infty}$ to converge linearly to p.

b: (3 pts) Let $p_n = 10^{-3^n}$. What order of convergence does p_n have?

c: (4 pts) Give two situations where you would use Bisection method over Newton's method.

4 a: (3 pts) Let $p_n \to p$. Give two conditions that are necessary to use accelerated convergence to compute \hat{p}_n .

b: (2 pts) Given $p_1 = 9, p_2 = 7, p_3 = 4$, compute \hat{p}_1 .

5 a: (3 pts) Explain how to derive Secant Method from Newton's method.

b: (2 pts) Let $f(x) = x^4 - 17$. Compute the first two steps of Bisection method on the interval [0, 4].

6 a: (4 pts) Use Horner's method to evaluate $p(x) = x^3 + x^2 - x - 1$ at x = 2.

b: (2 pts) Using the results of part (a), find q(x) where

$$p(x) = (x-2)q(x) + c$$

where c is your answer in part (a).