Midterm I/math110/fall 2003 LIU

Total Score: 100%, Time:2:10-3:30pm

Total Score: 100 Name:

- 1.(15%) Determine if the following statements are true or false and give a brief reasoning for each statement.
 - (a). Every vector space V over \mathbf{R} is finite dimensional. (3%)
 - (b). The union of any two vector spaces over R is always a vector space over R. (4%)
- (c). The set $V = \{(x,y)|x,y \in \mathbf{R}\}$ with the addition $(x_1,y_1) + (x_2,y_2) = (y_1 + x_2,x_1 + y_2)$ and scalar multiplication $c \cdot (x,y) = (cx,cy), c \in \mathbf{R}$ forms a vector space over \mathbf{R} . (4%)
 - (d). Any basis of an n dimensional vector space over \mathbf{R} can not contain more than n elements. (4%)
- 2.(20%) Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5\}$, with $\mathbf{v}_1 = 1 + x + x^2$, $\mathbf{v}_2 = 1 2x$, $\mathbf{v}_3 = x + 3x^2$, $\mathbf{v}_4 = 1 + x^2$, $\mathbf{v}_5 = -2 x x^2$, be a set of five vectors in $P_2(\mathbf{R})$,
 - (a). Please show that $Span(S) = P_2(\mathbf{R})$. (10%)
- (b). Please find a subset of S which forms a basis of $P_2(\mathbf{R})$. Please explain why your choice is a basis. (10%)
- 3. (25%) Let $V = M_{n \times n}(\mathbf{R})$ be the space of n by n matrices. Consider the subset W_n of skew-symmetric matrices, i.e. the set of $n \times n$ matrices m in V such that $m^t = -m$. (m^t means the transpose of m)
 - (a). Show that W is a subspace. (10%)
 - (b). For $W_3 \subset \mathbf{M}_{3\times 3}(\mathbf{R})$, find a basis of W_3 and justify that it is a basis of W_3 . (10%)
 - (c). Determine the dimension of W_3 . (5%)
 - 4.(20%) (a). Consider a few functions
 - $T_1: \mathbf{R}^2 \mapsto \mathbf{R}^3, T_1(x,y) = (x+|y|, y, x-y).$
 - $T_2: \mathbf{R}^2 \mapsto \mathbf{R}^3, T_2(x,y) = (2x+1, 4y-3, x).$
 - $T_3: P_2(\mathbf{R}) \mapsto P_4(\mathbf{R}), T_3(f) = f^2, f \in P_2(\mathbf{R}).$
 - $T_4: \mathbf{M}_{2\times 2}(\mathbf{R}) \mapsto \mathbf{R}, T_4(m) = tr(m), \text{ for } m \in \mathbf{M}_{2\times 2}(\mathbf{R}).$
 - $T_5: \mathbf{M}_{3\times 3}(\mathbf{R}) \mapsto \mathbf{M}_{3\times 3}(\mathbf{R})$ defined by $T_5(m) = m m^t$ for $m \in \mathbf{M}_{3\times 3}(\mathbf{R})$.

List all those which are not linear transformations. For each of them, explain why it is not a linear transformation. (12%)

- (b). Let $\{v_1, v_2, \dots, v_n\}$ be a linear dependent subset of V and let $T: V \longrightarrow W$ be a linear transformation. Show that $\{T(v_1), T(v_2), \dots, T(v_n)\}$ is a linear dependent subset of W. (8%)
 - 5.(20%) Let $S = \{v_1, v_2, \dots, v_n\}$ be a basis of a vector space V.
- (a). Prove that (without applying theorems) for any $v \in V$, but $v \notin S$, the union $S \cup \{v\}$ is linearly dependent. (10%)
- (b). Prove that (without applying theorems) for any $v \in S$, the deletion of v from S, $S \{v\}$, does not generate V. (10%)

Extra Credit:

(10%) Let $W \subset V$ be a subspace of the finite dimensional vector space V. Prove that $dim(W) \leq dim(V)$.

The 8 Axioms of Vector Spaces over R

Let V be a set with an addition + and a scalar multiplication \cdot . V is said to be a vector space over ${\bf R}$ if

- (VS1) For all $x, y \in V$, $x + y = y + x \in V$.
- (VS2) For all $x, y, z \in V$, (x + y) + z = x + (y + z).
- (VS3) There exists an element in V denoted by 0 such that x + 0 = x for each $x \in V$.
- (VS4) For each $x \in V$, $\exists y \in V$ such that x + y = 0.
- (VS5) For all $x \in V$, $1 \cdot x = x$.
- (VS6) For each pair of $a, b \in \mathbf{R}$ and each element $x \in V$, $(ab) \cdot x = a \cdot (b \cdot x)$.
- (VS7) For each $a \in \mathbf{R}$ and each pair of $x, y \in V$, $a \cdot (x + y) = a \cdot x + a \cdot y$.
- (VS8) For each pair of $a, b \in \mathbf{R}$ and each element $x \in V$, $(a + b) \cdot x = a \cdot x + b \cdot x$.