P. Vojta Fall 2003

Math 113 Final Examination

3 hours

- 1. (20 points) Carefully define the following. (In each definition you may use without defining them any terms or symbols that were used in the text prior to that definition.)
 - (a). normal subgroup
 - (b). inner automorphism
 - (c). group action
 - (d). isotropy subgroup
 - (e). ideal
- 2. (20 points) Carefully define the following, under the same conditions as the first problem.
 - (a). unit
 - (b). irreducible (element of an integral domain)
 - (c). constructible number
 - (d). α is algebraic over a field F
 - (e). algebraically closed field
- 3. (25 points) Compute the following:
 - (a). The center of the group given by the table:

*	e	a	<u>b</u>	c_{\perp}	d	$\mid f \mid$	$\mid g \mid$	h
e	e	$a_{.}$	b	· c	d	$\int f$	g	h
a	a	b	c	e	g	h	f	d
b	b	c	e	a	f	d	h	g
\overline{c}	c	\dot{e}	a	b	h	g	d	f
d	d	h	f	g	e	b	c	a
f	f	g	d	h	b	e	a	c
g	g	d	h	\overline{f}	a	c	e_{\perp}	b
h	h	f	g	d	c	a	\boldsymbol{b}	e

- (b). The characteristic of the ring $\mathbb{Z}_6 \times \mathbb{Z}_{20}$.
- (c). The last digit of the number $23^{123,321,123,321,268,862}$.
- 4. (15 points) Determine all subgroups of $\mathbb{Z}_5 \times \mathbb{Z}_5$, and draw a subgroup diagram of them.
- 5. (25 points) Prove Cayley's theorem, that every group is isomorphic to a group of permutations. At your option, your proof may use material from later in the book (but not Cayley's theorem itself, of course).

6. (25 points) Factor the polynomial

$$10x^4 - 10x^3 - 490x^2 + 560x - 70$$

into irreducibles in $\mathbb{Z}[x]$. Give some justification for why each factor is irreducible.

- 7. (25 points) (a). Show that the zero ideal in $\mathbb{Z}[x]$ is prime but not maximal. [Hint: There's an easy way and a hard way to do this.]
 - (b). Find another ideal in $\mathbb{Z}[x]$ that is prime but not maximal.
 - (c). Show that all nonzero prime ideals in $\mathbb{Z}[i]$ are maximal.
- 8. (20 points) Let E/F be a field extension. Let $\alpha \in E$ be algebraic of odd degree over F. Show that α^2 is algebraic of odd degree over F, and that $F(\alpha) = F(\alpha^2)$.