Math 113

Introduction to Abstract Algebra—Prof. Haiman

Fall, 2003

Final Exam

3 T	
Name	
TAGILIC	

Instructions:

- 1. Please do not look at the problems until everyone has an exam and you have been told to begin.
- 2. Write answers on the exam itself, attaching extra sheets if necessary. Turn in only work you wish to have graded; do not include scratch work.
 - 3. Books, notes, calculators or other aids may not be used.
- 4. Show enough work to make your reasoning clear, even if a problem has a true/false or numerical answer.
 - 5. There are 9 problems, with value indicated on each problem.
 - 6. Time: 3 hours.

For grading only				
1		2		
3		4	-	
5		6		
7		8		
9				
Total:				

1. (12 pts.) Which of the groups listed below are isomorphic to which others?

(a)
$$\mathbb{Z}_{20}$$

(b)
$$\mathbb{Z}_{10} \times \mathbb{Z}_2$$

(c)
$$\mathbb{Z}_5 \times \mathbb{Z}_4$$

(a)
$$\mathbb{Z}_{20}$$
 (b) $\mathbb{Z}_{10} \times \mathbb{Z}_2$ (c) $\mathbb{Z}_5 \times \mathbb{Z}_4$ (d) $\mathbb{Z}_5 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ (e) D_{10}

$$\langle \mathbb{Z}_2 \times \mathbb{Z}_2 \pmod{D_{10}}$$

- 2. (12 pts.) (a) Let H_1 and H_2 be distinct subgroups of a group G, with $|H_1| = |H_2| = p$, where p is prime. Show that $H_1 \cap H_2 = \{1\}$.
 - (b) Determine how many subgroups of order 5 the permutation group S_5 has.

3. (10 pts.) The *icosahedron* is the regular solid in 3 dimensions with 20 triangular faces, sketched below.

Let G be the group of rotational symmetries of the icosahedron.

- (a) What is the order of the isotropy subgroup of a face of the icosahedron?
- (b) What is the order of G?

4. (12 pts.) Recall that a group is *simple* if it has no proper non-trivial normal subgroup. For each of the following possibilities, either give an example of a simple group of that order or show that none exists.

- (a) order 4;
- (b) order 17;
- (c) order 60.

5. (10 pts.) Decide whether or not

$$\frac{x+1}{x+2} = \frac{x^2+2}{x^2+x+1}$$

is true in a field of quotients of the integral domain $\mathbb{Z}_3[x]$.

- **6.** (12 pts.) Decide whether or not each of the following subsets $I \subseteq \mathbb{Z}[x]$ is an ideal. If so, describe a more familiar ring to which the factor ring $\mathbb{Z}[x]/I$ is isomorphic.
 - (a) $I = \{f(x) : \text{the constant term of } f(x) \text{ is a multiple of } 3\};$
 - (b) $I = \{f(x) : \text{the coefficient of } x^2 \text{ in } f(x) \text{ is zero}\}.$

7. (10 pts.) Let R be a commutative ring with unity. Prove that the ideal $(x) \subseteq R[x]$ is prime if and only if R is an integral domain.

8. (10 pts.) Let α be a zero of x^3-2 in a field extension $\mathbb{Q}(\alpha)$ of \mathbb{Q} . Find the rational numbers a, b, c such that $(1+\alpha)^{-1}=a+b\alpha+c\alpha^2$.

- 9. (12 pts.) Let $\sqrt[3]{2}$ be the real cube root of 2 and let i be the imaginary unit in \mathbb{C} , as usual.
 - (a) Find $\operatorname{irr}(\sqrt[3]{2}, \mathbb{Q})$, $\operatorname{irr}(i, \mathbb{Q})$ and $\operatorname{irr}(i, \mathbb{Q}(\sqrt[3]{2}))$.
 - (b) Compute the degree of the extension $[\mathbb{Q}(\sqrt[3]{2}, i) : \mathbb{Q}]$.
 - (c) Show that $\mathbb{Q}(i\sqrt[3]{2}) = \mathbb{Q}(i, \sqrt[3]{2})$.
 - (d) Find $\operatorname{irr}(i\sqrt[3]{2}, \mathbb{Q})$.