MATH 160 FINAL DECEMBER 18, 2003 H. Wu

Your Name:	
I (48%; 8% each) For each of the names or formulas or concepts, history of mathematics and supply as much information as you can. Write the back of the page if necessary.	

(1) Elliptic planetary orbits.

(2) G. Cardano.

(3) J. Napier.

(4) G. Desargues.

(5) $\sum_{i=1}^{n} i^{k}$ for a fixed positive integer k.

Your Name:

(6) $\sum_{n=1}^{\infty} \frac{1}{n^k}$ for a fixed integer k > 1.

II (15%) According to the cubic formula, the equation $x^3 - 63x = 162$ has the following root:

$$\sqrt[3]{81+30\sqrt{-3}} + \sqrt[3]{81-30\sqrt{-3}}$$

This root should be an integer. Do you know what this integer is, and why?

72

III (15%) Let p be a prime integer (1) If p is a sum of two integer squares, prove that $p \equiv 1 \pmod{4}$. (2) Suppose a, b, c, d are positive integers and $p = a^2 + b^2 = c^2 + d^2$. Prove that $\{a, b\} = \{c, d\}$.

Your Name: _____

IV (15%) Without getting the exact answer, explain how one can integrate $\int \frac{x^2 dx}{(x^2 + 6x + 10)^2}$ in terms of elementary functions. Note: $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$ and $\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$.

V (7%) Write down what you consider to be notable things (if any) that you have learned in this course.

2