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George M. Bergman Fall 2003, Math 104, Sec.2 10 Dec., 2003
70 Evans Hall Final Exam 12:30-3:30

1. (32 points, 4 points each.) Complete the following definitions. Unless otherwise stated
you may use without defining them any terms or symbols which Rudin defines before he
defines the concept asked for. You do not have to use exactly the same words as Rudin,
but for full credit your statements should be clear, and be logically equivalent to his.

(a) Let X be a set, and let Ej, E,, ..., E,, ... be countably many subsets of X. Then
ﬁ =1 £, denotes the set of those elements xe X such that .

(b) If ( pn) (or in Rudin’s notation, {pn}) is a sequence of elements of aset X, then a
subsequence of (p,) means . ..

(¢) If X and Y are metric spaces, then a function f: X — Y is said to be continuous at
apoint peX if ...

(d) If f is a real-valued function on an interval {a,b] and x is a point of [a,b], then
by the derivative f'(x) (if this exists) we mean the real number . . .

(e) If f is a real-valued function on an interval [a, b], o an increasing function on

la, k], and P ={xg, x;,....,x,} a partition of [a, b], then the lower sum L(Pf o) is
defined to be . . (If your deﬁnmon uses symbols for certain numbers defined in terms of
f, P and ¢, mdlcate what they mean.)

(fy If X is a metric space, then £(X) denotes the metric space described as follows:
The points of &(X) are ...

The distance between two such points is given by . . .
(g) A family « of complex-valued functions on a set F is said to be an algebraif.. . .
(h) A family = of functions onaset E issaidto separate pointson E if ...

2. (32 points, 4 points each.) For each of the items listed below, either give an example
with the properties stated, or give a brief reason why no such example exists.

If you give an example, you do' not have to prove that it has the property stated;
however, your examples should be specific; i.e., even if there are many objects of a given
sort, name a particular one. If you give a reason why no example exists, don’t worry about
giving a detailed proof; the key relevant fact will suffice.

(a) A subset E of the ordered field @ of rational numbers which has an upper bound in
@ but does not have a least upper bound in Q.

(b) A bounded sequence in R with no convergent subsequence.

(c} A continuous one-to-one and onto function between metric spaces, f: X — ¥, such
that the inverse function f ~L ¥ — X is not continuous.

(d} A real-valued function f on [0,1] which is Riemann integrable, but such that the
function |f| defined by |f|(x) =|f(x)| is not Riemann integrable.

(e} A family of complex numbers s (m, n>0) such that

lim,,_, . (lim ) and lim (lim ) are both defined, but are
unequal.

(f) A set E and a sequence of real-valued functions f, on E which are pointwise
convergent but not uniformly convergent.

(g) A real-valued function f on [0,1] which is not a uniform limit of polynomials.

(h) A continuous real-valued function f on (0,1) which is not a uniform limit of
polynomials.

3. (4 points.) For x, yeRk, prove that |x+y| = |x| —|y|. You may assume inequalities
proved in Rudin.

4. (6 points.) Suppose (p,) is a Cauchy sequence in a metric space X, and suppose
some subsequence ( Py, ) converges to a point pcX. Prove that (p,) also converges

to p.
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5. (8 points.) Most of Rudin’s proof of Weierstrass’s Theorem is devoted to showing that
if f is a continuous complex-valued function on [0,1], then there exists a sequence of
polynomials P, such that P, (x) — f(x) uniformly on [0,1]. Show that once we know
this fact, we can deduce from 1t the statement of the theorem, namely that if f is a
continuous complex-valued function on any interval [a,b] (for a < b real numbers) then
there exists a sequence of polynomials P, such that P, (x) — f(x) uniformly on [a, b].

Your proof will involve some way of obtaining from functions on [a, b] functions on
[0,1] ancf vice versa. Be precise in showing that a function of one sort does indeed give a
function of the other sort, and that the uniform convergence assumed implies the uniform
convergence desired.

(As discussed in class, such an argument is what Rudin is assuming the reader can
supply to when he says ‘“We may assume, without loss of generality, that [a, b] = [0,1]"".
Very little but definitions are needed for this argument; but, just to set down the rules:

You may use any facts proved in Rudin before Weierstrass’s Theorem, but not that
theorem or anything proved later. Note also that, for brevity, I am not also asking you to
prove, as Rudin does, that we can also assume f(0) = f(1) = 0.}

6. (18 points, 3 points each.) Below, a theorem is proved. After certain steps of the proof
I have inserted parenthetical questions such as ‘‘([0] Why?)””. Answer each of these
questions at the bottom of the page, after the corresponding number. Your answers can be
results proved in Rudin (you don’t have to specify their statement-numbers!), observations
about the given situation, or calculations. You should seldom need as much space as is
given for the answers; one key fact or calculation is what is wanted in each case. Note
also that if you can’t justify some step, you may still assume it in justifying later steps.

Theorem. Let E be a subset of a metric space X, and f: E— R a uniformly
continuous function. Then there exists a uniformly continuous function F: E— R which
extends f. (Here E denotes the closure of E in X, and the statement that F extends
f means that F(p) = f(p) forall peE.) ,

Proof. For each pcE, let us choose a sequence (p,) in E such that lim, ,  p,
= p. (If p is alimit point of E this.can be done by Theorem 3.2(d); if p isan
isolated point of E, we can take (p,) to be the constant sequence with all p, = p.)

We claim that (f(p,)) is a Cauchy sequence in R. Indeed, given £>0, letus takea &
such that for all points x, ye E with d(x,y) <8 we have |f(x) — f(y)| < &. ([1) What
condition assumed above implies that such & exists?) Choose an N such that for n=N
we have d(p,,p) < 8/2. (|2| What condition assumed above implies that such N exists?)
Then for m,n= N we have |f(p,,) - f(p,)] < ¢ ([3 Why?)

Hence_(f(p,)) converges to some real number; let us call this F(p). Doing this for
cach peE, we get a function F: E— R. We see that if pe £, then F(p) = f(p).

([4] Why?) That is, F extends f, as claimed.

To show that F is uniformly continuous, again let & > 0. Take any positive £’ < &,
and let us now choose & >0 (not, in general, the & of the preceding paragraph) such
that for all p,ge E with d(p,q) < & we have |f(p) - f(g)| < £’. We shall show that for
p.ge L with d(p,q) < 8 we have |F(p) - F(q)| < e.

Indeed, given p,q€E with d(p,q) <&, let (p,) and (gq,) be the sequences used
in defining F(p) and F(g) as above. Let us choose a positive integer m satisfying
both d(p,,,p) <(6-d(p g))/2 and lf(pm) - F(p)| < (e—-€")/2. (By choice of (p,,)
the first inequality will hold for all m > some M; and by definition of F(p) the second
will hold for all m = some M,, hence there will be some m for which both hold.

([5] For instance?)) Similarly, lét us choose n satisfying both d(q,.q) <(8-d(p, q))/2
and |f(q,) - F(q)| < (e - €")/2. _

Putting together our inequalities involving distances between points of E, we see that
d(p,,. q,) < 4. ([6! Show computation.) Hence by choice of &. |f(p,,) —f(qn)| < g,
henle |F(p) - F()] < |F(p) - f(pu) + 1F(Py) — Fla)| + |f(a,) - Hg)| < (e - e /2 +
e + (e~ €")/2 = &. Since we have proved this for any p,ge £ with d(p,q) <8, we
have proved F uniformly continuous, as required.



