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MATH 113 — FALL 2003 FINAL EXAM
INTRODUCTION TO ABSTRACT ALGEBRA

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA, BERKELEY
INSTRUCTOR: ALEXANDER YONG

NAME:

ID NUMBER:

(1) Do not open this exam until you are told to begin.

(2) This exam has 10 pages including this cover. There are 9 ques-
tions total. You have 3 hours.

(3) No aids such as calculators, notes or books are permitted.

(4) You will be handed scrap paper for use.

(5) Do not separate the pages of the exam. If any pages do become
separated, write your name on them and point them out to the
proctor when you turn in the exam.

{(6) You may use any results proved in class. However, you must
include complete hypotheses and conclusions to ensure credit.

(7) Please turn off all cell phones.
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1. Consider the following problems about the S, the symmetric group
on {1,2,...,n}: [12 marks]
(a) Let n = 6 and let 7 = (1 2 3 4) € Sg be a cycle (ie, 1 —
2, 23, 3—4, 4— 1). Compute 72, 7% 7. [3 marks]
{b) Prove that S, contains as a subgroup, an isomorphic copy of
each cyclic group C; = Z; for i = 1,2,...n. |5 marks]
(c) Can Sygo contain an isomorphic copy of Cioy as a subgroup?
Why or why not? [4 marks]
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2. Consider the quotient ring R = R[z]/{z? + z + 1). [12 marks]
(a) Prove that R is a field. [5 marks]
(b) Give a description (with proof) of the cosets of R. [5 marks]
(c) This ring is isomorphic to a well known ring S. What is 57
You do not need to prove your assertion. [2 marks]
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3. Consider the ring § = Q(Q%,Qé,%l,...), i.e., the smallest field
containing @ and all the (real) n*® roots of 2, for n = 2,3,4,.... 10
marks]

(a) Prove that § is an algebraic extension over Q. [5 marks]

(b) Prove that S is not a finite extension over Q. [5 marks]



03/02/2004 14:30 FAX 510 642 9454 doos

4. Let Z[i] = {a + bi | a,b € Z} be the ring of Gaussian integers.
Determine whether the ideal {3 +1) is a prime ideal in Z[4]. [12 marks]
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5. Let G act on itself by conjugation: g h = ghg ! where g, h € G;
recall this splits G into conjugacy classes. Prove that every normal
subgroup H of a group G is a union of conjugacy classes of G, one of
which is {1}. [10 marks]
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6. Let G be a finite group with | G |= p®m where p is prime and m < p.
[12 marks] '

(a) State Sylow’s first theorem. [4 marks]

(b) Prove that all of G’s Sylow p-subgroups are normal. [8 marks]
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6. Prove that no group is the union of two proper subgroups (IIINT:
you don’t need any fancy theorems to prove this one). [10 marks]
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8. Let p and ¢ be two distinct prime integers. [12 marks]

(a) Show that Q(/P + /4) = Q(\/P, /7). [6 marks]
(b} Find the minimal polynomial of \/p + ,/q. [6 marks]
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9. Let H be a normal subgroup of a group G, and let m = [G : H].
Show that a™ € H for every a € G. [10 marks|
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