Final Exam/math110/fall 2003 LIU Total Time: 12:30am-3:30pm Total Score: 200 points

- 1. (15%) Please determine if the following statements are true or not. Give a brief reasoning for each of your answers.
 - (a). All the unitary operators on a finite dimensional vector space over C are normal. (3%)
 - (b). All $n \times n$ matrices in $\mathbf{M}_{n \times n}(\mathbf{R})$ have their associated Jordan canonical forms over \mathbf{R} . (3%)
 - (c). Let V be a finite dimensional inner product space and $T \in \mathcal{L}(V)$. Then $R(T^*) = N(T)$. (3%)
- (d). Let V be a finite dimensional inner product space. An operator $T \in \mathcal{L}(V)$ is self-adjoint iff $[T]_{\beta} = [T]_{\beta}^*$ for all the ordered bases β . (3%)
 - (e). All the orthogonal transformations on a finite dimensional vector space over R are onto. (3%)
- 2. (20%) (a). Prove Schur's theorem, I.e. when the characteristic polynomial of a linear transformation $T \in \mathcal{L}(V)$ (on a finite dimensional inner product vector space V over $F = \mathbf{R}$ or \mathbf{C}) splits, then there exists an orthonormal basis β such that $[T]_{\beta}$ is upper-triangular. (14%)
- (b). Prove that a self-adjoint operator T over \mathbb{C} must be diagonalizable by an orthonormal basis. I.e. \exists an orthonormal basis β such that $[T]_{\beta}$ is diagonal. (6%)

3.(25%) (a). Consider the matrix
$$A = \begin{pmatrix} 0 & 4 & 0 \\ 4 & 0 & 4 \\ 0 & 4 & 0 \end{pmatrix}$$
.

Show that A is normal and diagonalize A by an orthogonal matrix. (10%)

- (b). For the same A, write $L_A = \lambda_1 T_1 + \lambda_2 T_2 + \lambda_3 T_3$ and find T_1, T_2, T_3 explicitly. (5%)
- (c). Let $T: P_4(\mathbf{R}) \mapsto P_4(\mathbf{R})$ be T(f) = f'' + f. Determine the dot diagram and write down the Jordan canonical form of T. (10%)
- 4. (20%) (a). Let U be an unitary operator upon an inner product space (V, <, >) over \mathbb{R} , i.e. ||U(x)|| = ||x|| for all $x \in V$.

Prove that $\langle U(x), U(y) \rangle = \langle x, y \rangle$ for all x, y. (6%)

- (b). Suppose that $T_1, T_2 \in \mathcal{L}(V)$ are linear operators over an inner product space (V, <, >) such that the identity $\langle x, T_1(y) \rangle = \langle x, T_2(y) \rangle$ holds for all $x, y \in V$. Show that $T_1 = T_2$. (5%)
- (c). Let W be a finite dimensional subspace of the inner product space (V, <, >). Prove that an arbitrary vector $x \in V$ can be decomposed uniquely into the form x = u + z, where $u \in W$ and $z \in W^{\perp}$. (9%)
 - 5. (20%) (a). Prove that the eigenvalues of a self-adjoint operator are all real. (7%)
- (b). Show that all eigenvalues of anti-self-adjoint $T^* = -T$ operators are purely imaginary (i.e. $= \sqrt{-1}r, r \in \mathbf{R}$). (4%)
- (c). Determine all the operators $T \in \mathcal{L}(V)$ with $T^3 = T$, $T^* = -T$. What can T be? Write down your argument. (9%)
 - 6. (25%) Let (V, <, >) be a finite dimensional inner product vector space over \mathbf{R} .
- (a). Prove that a linear functional $f \in \mathcal{L}(V, \mathbf{R})$ can always be written as $f(x) = \langle x, \mathbf{v} \rangle$ for some $\mathbf{v} \in V$. (14%)
- (b). Let $\beta = \{v_1, v_2, \dots, v_n\}$ be an orthonormal basis of (V, <, >). Prove that $\langle x, y \rangle = [x]_{\beta}^t [y]_{\beta}$ for all $x, y \in V$. (6%)

For an $x \in V$, $[x]_{\beta}$ means the column vector of coordinates relative to β .

(c). Let $T: \mathbf{R}^4 \mapsto \mathbf{R}^4$ be defined by T(a,b,c,d) = (a+b,c+d,a-c,a+b+c+d). Please find $T^*: \mathbf{R}^4 \mapsto \mathbf{R}^4$ explicitly. (5%)

- 7. (15%) (a). Let W_1, W_2 be two finite dimensional vector subspaces of V. Prove that $dim(W_1) + dim(W_2) = dim(W_1 \cap W_2) + dim(W_1 + W_2)$. (9%)
- (b). Let β_1, β_2 be bases of W_1 and W_2 , respectively. Show that when $W_1 \cap W_2 = \{0\}$, $\beta_1 \cup \beta_2$ is a basis of $W_1 + W_2$. (6%)
 - 8. (15%) Let V be a finite dimensional vector space over \mathbf{R} .
- (a). Prove that when W is a T invariant subspace, extend a basis γ of W to a basis β of V. Prove that $[T]_{\beta}$ is of the following form, (7%)

$$\left(\begin{array}{cc} [T]_{\gamma} & B \\ \mathbf{0} & C \end{array} \right) \,.$$

- (b).Let W be a T-invariant sub-space of V. Prove that the characteristic polynomial of T_W divides the characteristic polynomial of $T \in \mathcal{L}(V)$. (8%)
 - 9. (15%) (a). Prove that for $A \in \mathbf{M}_{n \times n}(\mathbf{R})$, $dim_{\mathbf{R}} span(\{I, A, A^2, \dots\}) \le n$. (9%)
 - (b). Give an $n \times n$ example that $dim_{\mathbf{R}} span(\{I, A, A^2, \dots\}) = n$. (6%)
- 10. (15%) Prove the following statement: Let V and W be finite dimensional vector spaces having ordered bases β and γ , respectively and let $T \in \mathcal{L}(V, W)$. Then for all $u \in V$, we have $[T(u)]_{\gamma} = [T]_{\beta}^{\gamma}[u]_{\beta}$.
- 11. (15%) (a). Prove that two finite dimensional vector spaces V and W are isomorphic to each other if and only if dim(V) = dim(W). (10%)
 - (b). Show that a linear transformation $T \in \mathcal{L}(V, W)$ cannot be onto if dim(V) < dim(W). (5%)