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General problem: count the num-
ber of solutions to a FIXED polyno-
mial(s) modulo a VARIABLE PRIME

number.

RECIPROCITY LAW: a law which
gives a completely different way to
find the number of solutions for any

given prime p.

DENSITY THEOREM: a theorem
which describes the statistical be-
haviour of the number of solutions

as the prime p varies.



GAUSS’ LAW OF QUADRATIC
RECIPROCITY (1796):

For any whole number n and prime
number p the number of solutions

to

X2 =n modulo p

IS O, 1 or 2. For fixed n it depends

only on p modulo 4n.



How many solutions does X247 =0
have modulo 324528437

32452843 = 1159030 x 28 + 3

Thus it has the same number of

solutions as does

X2 4+ 7 =0 modulo 3,

l.e. none.



DISTRIBUTION QUESTIONS

For what fraction of prime numbers
p does X2 4+ n = 0 modulo p have
2 solutions? And what fraction 0O

solutions?

THEOREM (Dirichlet, 1837): If —n
IS not a perfect square then for half
the primes X2 4+ n = 0 modulo p
has two solutions and for half the

primes it has no solutions.



More precisely de la Vallée-Poussin
showed in 1896 that

#{p <t: X?+n=0modp has no solutions}
#{p < t}

and

#{p <t: X?+n=0modp has two solutions}
#{p < t}

(where p denotes a variable prime
number) both tend to 1/2 as ¢ tends
to infinity.

Both Dirichlet and de la VVallée-Poussin
used Gauss’ law of quadratic reci-
procity in an essential way.



What about higher degree polyno-

mials of one variable?

There is a reciprocity theorem con-
jectured by Langlands, but it still
seems to be far from being proved.
It iIs not known even for a general

quintic equation.

However, rather surprisingly, Dirich-
let’s density theorem was extended
to ALL one variable polynomial equa-

tions by Frobenius in 1880.



Example:
X4 _2=o.

Its GALOIS GROUP G consists of

all permutations of the roots
(V2,iV2,—V2,—iv2)}

which preserve all algebraic relations

between them. For instance
V24 (=V2)=0

and so the pair {v/2,—Vv?2} must be
taken either to itself or to the pair

{iV/2,—iv/2}.



1

(V2,iV2, —=V/2, —iV2)
(V2, =V2)(iv2, —iv2)
(V2, —iv/2, —v/2,iv?2)
c= (iv/2, —iv/2)

(V2, =iv2)(=V/2,iV2)
(V2, —V/2)

(V2,iv2)(—= V2, —iv/2)



There are 8 such permutations:

1 fixes all four roots;

2 fix just two roots; and

5 fix no roots.

Frobenius and de la Vallée-Poussin
showed that
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#{p<t: X% —2=0modp has 0 solutions}
#{p < t}

#{p<t: X*%—2=0modp has 1 solution}
#{p <t}

#{p<t: X%—2=0modp has 2 solutions}
#{p < t}

#{p<t: X*—2=0modp has 3 solutions}
#{p < t}

#{p<t: X*—2=0modp has 4 solutions}
#{p < t}

. 5/8

1/4

1/8

as t goes to infinity.
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What about equations with more
variables?

For example (elliptic curves):
Y2=X34cX+d

(c,d being fixed integers. Smooth,
i.e. 4¢3+ 27d? £0. )

i = 6912¢3/(4c3 4 27d?) is the
jJ-invariant of FE.

How does the number N, of solu-

tions modulo p vary with a prime
number p?
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Eg:Y24+Y =X3-X?

2 3 b5 7 11 13 17 19

-2 -11 -2 1 4 -2 0
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Y24Y =X3- X?

P 2 3 b 7 11 13 17 19

p—Np| -2 -1 1 2 1 4 -2 0

g 11 (1— 21— q''7)2 =

n=1
q—29°% — ¢+ 2¢*+q° + 2¢°—2¢"
_2q9 o 2q10_|_q11 o 2q12_|_4q13 _I_ 4q14

15— ag16 217 4 4418 4 2420 4
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Y24Y = X3 - X2

P 2 3 b 7 11 13 17 19 ...

p—Np| -2 -1 1 2 1 4 -2 0

g 11 (1— 21 - q''7)2 =

n=1
—29° — ¢ + 2¢*+q° + 2¢°—2¢"
_2q9 . 2q10_|_q11 o 2q12_|_4q13 _|_ 46]14

15— 4q16_2¢l7 4 4418 4 2420 4

THEOREM (Eichler, 1954)
p — Np Is the coefficient of ¢”.
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f(z)

627772,2 H%ozl(l . 6277,7712,2)2(1 o 622n7r7jz)2

o0 2Nmiz
n=1 dn¢€

(‘;’ Z) € SLo(Z) with 11|c implies

f((az +b)/(cz + d)) = (cz + d)? f(2)

Also

f(=1/(112)) = —112%f(2)
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TANIYAMA(’55)-SHIMURA(’'57)-
WEIL('67) CONJECTURE: Gives
a somewhat similar effective algo-
rithm for calculating p — N, for any

elliptic curve

E: Y?2=X3+¢X +d (smooth).

Proved (Breuil, Conrad, Diamond,
T: 2001) following ideas introduced
by Wiles.
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T he algorithm involves finite index
subgroups of GL»(Z) the group of
2 x 2 matrices with whole number
entries and determinant &1 and its

action on the hyperbolic plane.
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LANGLANDS in the mid 1970’s pro-
posed a similar reciprocity law for
any system of polynomial equations
iINn any number of variables in terms
connected to subgroups of finite in-

dex in GL,(Z) for variable n.
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We are beginning to make progress.
For example Tom Barnet-Lamb (2009)

has proved a reciprocity for
5, w51 v5.1 w5 v5 _
XT+X5+X3+X7+X5 = aX1 X0 X3X1 X5

for a € Q—7Z[1/10] in terms of GL4(Z)
and GL»>(Z). He deduces the mero-
morphic continuation and functional

equation of the (-function.
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DENSITY THEOREMS IN > 1 VARI-
ABLE

E: Y2=X3+4+¢X+d

THEOREM (Hasse, 1933): |[p—Np| <
2./p.

QUESTION: How is the normalised
error term (p— Np)/,/p distributed as

p varies?
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CONJECTURE (Sato-Tate, 1963):
If &/ is not CM then (p — Np)/\/p IS
distributed in the range from -2 to
2 like

(1/27)V4 — t2 dt.

l.e. for f e C[-2,2]

#{p <z} 1Y f((p— Np)/v/p)

p<x

tends to

(1/27) /_22 FOVE — 2 dt

adS r — o0.



SATO-TATE DISTRIBUTION
FOR A AND p <1,000,000

(drawn by WILLIAM STEIN)
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THEOREM (CHSBT, 2006): True
iIf jp € Q— 2.

There exist conjectural generaliza-
tions to any number of polynomial
equations in any number of vari-

ables.
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SU(2)/conjugacy — [—2,2]

lg] — trg
Haar measure «—— (1/27)y4 —t2dt

Fp//Pl — (p— Np)//P,

where [F,] C GL>(Q) has character-

iIstic polynomial

X2 — (p — Np)X +p.

(Frobenius conjugacy class.)
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The Sato-Tate conjecture says that
the conjugacy classes

[£p/ /P

are equidistributed in SU(2)/conjugacy
with respect to Haar measure.

We have to prove that for all f €
C[-2, 2]

( > f(tr Fp/\/ﬁ)) [#{p < w}

p<x

tends to
(1/27) /_22 FOVE — 12 dt

dS r — 0.
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The Peter-Weyl theorem tells us that

a the functions

n—1

tr Sym

for n = 1,2,3,... span a dense sub-
space of C[SU(2)/conjugacy] = C[-2, 2].

Hence it suffices to show that

(Z tr Sym ”1(Fp/\/z3)) /#{p < z}

p<x

tends to 1 if n =1 (clear) and tends
to 0O ifn>1.
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L-FUNCTIONS: We define a holo-

morphic function
L(Symm™ 1E. s)
in Res> (n+1)/2 by

1;[ det (1, — (Symm f”_lF)_U)/pS)_1 .
e.d.

L(SymmPE, s) = ¢(s)

L(Symm1lE, s) = L(E,s)
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Taking logarithmic differentials we

see that

L'(Symm™ 1E, s)/L(Symm ™ 1E, s)
differs from
—>_(log p)(tr Symm "~} (F//p))pt" P2
p

by a function holomorphic in Re s >
n/2.

Tauberian theorems tell us it suf-
fices that the ratio is holomorphic
iIn Res>(n+1)/2.
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i.e. that
L(Symm™ 1E, s)
IS holomorphic and non-zero In
Res > (n+1)/2
for n > 1.
Gelbart-Jacquet (1972): this is true

IF Symm "™ 1E satisfies a reciprocity

law involving GL,(7Z).
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