Math 53 Summer 2009 D. Kaspar

Final August 14

Full name:			
------------	--	--	--

- This exam begins at 2:10 and finishes at 4:00.
- Outside scratch paper, formula sheets, and calculators are not allowed.
- Write your answers in the spaces following each question. If you need more room, use the reverse side of the page and check the box indicating I should look at the back.
- Circle or box important parts of your work and cross out portions you do not want evaluated.
- You may ask me questions, but unless there is an error on the exam I will probably refuse to answer.
- Simplify your answers if you have time, but this is less important than the calculus part of the problem.
- Unless told otherwise, show all your work.

Question:	1	2	3	4	5	6	7	8	9	10	Total
Points:	10	10	10	10	10	10	10	10	10	10	100
Score:											

Work on reverse \square	Work	on	reverse	
---------------------------	------	----	---------	--

1.	(10 points) Indicate whether the statement is true (T) or false (weight and you shouldn't justify your answers. Assume all function are smooth. Read the statements carefully.	
	(a) $\frac{d}{dt}[f(\mathbf{r}(t))] = \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t)$.	
		(a)
	(b) If f defined on $x^2 + y^2 < 1$ is continuous, then f has an absolute maximum.	te minimum and an
		(b)
	(c) $\int_0^{2\pi} \int_1^2 (1) dr d\theta$ is the area of the region $1 \le x^2 + y^2 \le 4$.	
		(c)
	(d) $\lim_{a\to 0^+} \iiint_{B_a} (x^2 + y^2 + z^2)^{-1} dV$ is finite, where $B_a = \{(x, y, z) : a^2 \le x^2 + y^2 + z^2 \le 1\}.$	
		(d)
	(e) If $\mathbf{F}(x,y)$ is defined on the region $1 < x^2 + y^2 < 4$ and $\int_C \mathbf{F} \cdot d\mathbf{r}$ is then \mathbf{F} is conservative.	is path independent,
		(e)
	(f) $\int_{-C} f ds = -\int_{C} f ds$.	
		(f)
	(g) $\operatorname{curl}(\operatorname{div} \mathbf{F}) = 0$.	
		(g)
	(h) $\iint_M \mathbf{F} \cdot d\mathbf{S} = 0$, where M is the Möbius strip.	
		(h)
	(i) $\iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = 0$, where S is the unit sphere $x^2 + y^2 + z^2 = 1$	L
		(i)
	(j) $\operatorname{div}(f\mathbf{F}) = \nabla f \cdot \mathbf{F} + f \operatorname{div} \mathbf{F}$.	
		(j)

2. (a) (7 points) Show that u(x, y, t) defined by

$$u(x, y, t) = \frac{e^{-(x^2 + y^2)/(2t)}}{2\pi t}$$

is a solution to the partial differential equation $u_t - \frac{1}{2}(u_{xx} + u_{yy}) = 0$. You may use your calculation for u_{xx} to guess u_{yy} without penalty, provided you do so correctly.

(b) (3 points) For any fixed (x, y), determine (with justification) $\lim_{t\to+\infty} u(x, y, t)$.

- 3. Let $f(x,y) = x^4 4xy + y^4$.
 - (a) (5 points) Find the local minima, local maxima, and saddle points of f.

(b) (5 points) Find the tangent plane to the graph of z = f(x,y) at (0,0,0). Near (0,0,0) but not at (0,0,0), is the graph of z = f(x,y) strictly above the tangent plane, strictly below, or neither? Explain how you came to your conclusion.

4. (10 points) Explain why $f(x,y)=e^{-x^2-y^2}(x^2+2y^2)$ has an absolute minimum and an absolute maximum on the region $x^2+y^2\leq 4$, and then find all absolute minima and absolute maxima. To compare values at the end, remember that e>2.

5. (10 points) Find the mass and center of mass for the solid bounded by the cylinder $x^2 + y^2 = 1$ and the planes z = 0, z = 3 - x, with constant density k. You may use symmetry to skip certain calculations, but indicate this in your solution. The identity $\cos^2 \alpha = \frac{1}{2}(1 + \cos 2\alpha)$ may be useful.

7.7	In.	, on	rot	torgo	
٧١	/OF	s on	rev	zerse.	

6. (10 points) Evaluate $\iint_R \cos(9x^2 + 4y^2) dA$, where R is the region in the first quadrant bounded by the ellipse $9x^2 + 4y^2 = \frac{\pi}{2}$.

TT	7 1			
1/1	/ork	on	reverse	

7. (10 points) Evaluate $\iiint_E e^{(x^2+y^2+z^2)^{3/2}} dV$, E enclosed by sphere $x^2+y^2+z^2=4$ in the first octant.

TT	7 1			
1/1	/ork	on	reverse	

8. (10 points) Evaluate $\int_C y^3 dx - x^3 dy$, where C is the circle $x^2 + y^2 = 4$, oriented clockwise.

- 9. Do **not** use the theorems of Green, Stokes, or Gauss in parts (a) or (b).
 - (a) (4 points) Evaluate $\int_C (y \mathbf{i} + z \mathbf{j} + x \mathbf{k}) \cdot d\mathbf{r}$, where C is the circle $x^2 + y^2 = 1$, z = 0, oriented counterclockwise as viewed from above.

(b) (4 points) Evaluate $\iint_S (-\mathbf{i} - \mathbf{j} - \mathbf{k}) \cdot d\mathbf{S}$ where S is the hemisphere $x^2 + y^2 + z^2 = 1$, where $z \ge 0$, oriented upward.

(c) (2 points) Explain the similarity of the results above.

Work	on	reverse	
VVOIN	OII	TOVOISO	

10. (10 points) Suppose that u(x, y, z) is a smooth function and solves the partial differential equation

$$\nabla^2 u = 1.$$

If a simple solid region E has outward-oriented boundary surface S, show $\iint_S \nabla u \cdot d\mathbf{S}$ is the volume of E.

Extra sheet