D. Geba MATH 105 - FINAL 5/16/2006

- 1. Let (X, S, ν) be a measure space with ν a finite measure. For $A, B \in S$ we say that $A \sim B$ if and only if $\nu(A\Delta B) = 0$. Prove that:
 - i) ~ is an equivalence relationship on S;
 - ii) if $A_1 \sim A$ and $B_1 \sim B$ then $\nu(A \Delta B) = \nu(A_1 \Delta B_1)$.
 - 2. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a Lebesgue integrable function and define

$$E_n = \{x; |f(x)| > n\}$$

Prove that $\lim_{n\to\infty} n\,\mu(E_n) = 0$.

3. Define $f:(0,\infty)\longrightarrow \mathbb{R}$ by

$$f(x) = \frac{1}{\sqrt{x}(1 + |\log x|)}$$

Prove that $f \in L^2(0,\infty)$ but $f \notin L^p(0,\infty)$ for every $p \neq 2$, $1 \leq p < \infty$.

4. Prove that if $f,g:\mathbb{R}\longrightarrow\mathbb{R}$ are Lebesgue integrable functions, then $h: \mathbb{R}^2 \longrightarrow \mathbb{R}$, defined by

$$h(x,y) = f(x) \cdot g(y)$$

is λ -integrable and

$$\int h \, d\lambda \, = \, \int f \, d\mu \cdot \int g \, d\mu$$

5. Let $(\phi_n)_n$ and $(\psi_n)_n$ be two orthonormal systems in $L^2[a,b]$ such that

$$\sum_{n=1}^{\infty} \|\phi_n - \psi_n\|^2 < 1$$

Prove that these systems are either both complete or incomplete.