George M. Bergman 70 Evans Hall

Spring 2004, Math 185, Sec. 1
Second Midterm

2 April, 2004 10:10-11:00

1. (40 points, 10 points each.) For each of the items listed below, either give an example with the properties stated, or give a brief reason why no such example exists.

If you give an example, you do *not* have to prove that it has the property stated; however, your examples should be specific; i.e., even if there are many objects of a given sort, name a particular one. If you give a reason why no example exists, don't worry about giving a detailed proof; the key relevant fact will suffice.

- (a) An interval [a, b], and two closed paths $\gamma_1, \gamma_2 : [a, b] \to \mathbb{C} \setminus \{0\}$, such that γ_1 and γ_2 are not homotopic as paths in $\mathbb{C} \setminus \{0\}$, but are homotopic as paths in \mathbb{C} .
- (b) An interval [a, b], and two closed paths $\gamma_1, \gamma_2 : [a, b] \to \mathbb{C} \setminus \{0\}$, such that γ_1 and γ_2 are not homotopic as paths in \mathbb{C} , but are homotopic as paths in $\mathbb{C} \setminus \{0\}$.
- (c) A differentiable function f on the punctured disk $\{z \in \mathbb{C} \mid 0 < |z| < 1\}$ which has a pole of order 2 at z = 0, and satisfies res(f, 0) = 5.
- (d) A differentiable function f on the punctured disk $\{z \in \mathbb{C} \mid 0 < |z| < 1\}$ which has an essential singularity at z = 0.
- 2. (10 points) Suppose f is a differentiable function on a disc $N_R(z_0)$, C_r is a circle of radius r < R about z_0 , and w is a point inside C_r . Give a formula (the Cauchy Integral Formula) by which f(w) can be computed from the values of f on C_r .
- 3. (15 points) Suppose a function f differentiable in a punctured disc $D = N_R(z_0) \setminus \{z_0\}$ has a simple pole at z_0 . Show that f does not have an antiderivative in D.
- **4.** (15 points) Let r be a positive real number, and f a differentiable function on the domain $D = \{z \in \mathbb{C} \mid |z| > r\}$. Show that if f is bounded on D, then $\lim_{z \to \infty} f(z)$ exists. (We recall that saying the limit exists means that there is some complex number L such that $\lim_{z \to \infty} f(z) = L$, i.e., such that for every $\varepsilon > 0$ there exists an R > 0 such that for all z with |z| > R, one has $|f(z) L| < \varepsilon$.)

Hint: Think about the kind of singularity f can have at ∞ .

- 5. (20 points = 10+3+5+2) Let $\rho_1 \neq \rho_2$ be complex numbers, and C a circle in \mathbb{C} , oriented counterclockwise.
- (a) Compute the residues of $1/((z-\rho_1)(z-\rho_2))$ at ρ_1 and at ρ_2 .

For the next three parts, give the value of $\int_C 1/((z-\rho_1)(z-\rho_2)) dz$ if ...

- (b) both ρ_1 and ρ_2 are inside C:
- (c) ρ_1 is inside C and ρ_2 is outside C:
- (d) both ρ_1 and ρ_2 are outside C: