GEBA

MATH 110 - MIDTERM 3/4 /2004

1. In $M_{m\times n}(F)$ define $W_1 = \{A \in M_{m\times n}(F) | A_{ij} = 0 \text{ whenever } i > j\}$ and $W_2 = \{A \in M_{m\times n}(F) | A_{ij} = 0 \text{ whenever } i \leq j\}.$

Prove that $M_{m \times n}(F) = W_1 \oplus W_2$.

- 2. Let u, v and w be distinct vectors of a vector space V. Prove that if $\{u, v, w\}$ is a basis for V, then $\{u + v + w, v + w, w\}$ is also a basis for V.
 - 3. Let $T: M_{2\times 2}(\mathbb{R}) \to P_{\leq 2}(\mathbb{R})$ be the linear transformation defined by

$$T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+b) + 2cx + dx^2$$

- a) Find N(T), R(T), nullity(T), rank(T) by specifying a basis for each one of them.
- b) Let α and β the standard bases for $M_{2\times 2}(\mathbb{R})$ and $P_{\leq 2}(\mathbb{R})$ respectively. Consider also $\gamma = \{1, x+1, x^2+1\}$ basis for $P_{\leq 2}(\mathbb{R})$.

Compute Q the change of coordinate matrix from β -coordinates to γ -coordinates and the representation matrices $[T]_{\alpha}^{\beta}, [T]_{\alpha}^{\gamma}$.

Check that

$$[T]^{\gamma}_{\alpha} = Q \cdot [T]^{\beta}_{\alpha}.$$

- 4. Let V and W be finite-dimensional vector spaces and $T:V\to W$ be linear.
 - a) Prove that if dim $V < \dim W$, then T cannot be onto.
 - b) Prove that if dim $V > \dim W$, then T cannot be one-to-one.
- 5. Let A, B two square matrices, $A, B \in M_{n \times n}(\mathbb{R})$ such that AB = A + B. Prove that AB = BA.