Prof. Bjorn Poonen May 18, 2004

MATH 185 FINAL

Do not write your answers on this sheet. Instead please write your name, your student ID, and all your answers in your blue books. Total: 100 pts., 2 hours and 50 minutes.

- (1) (4 pts. each) For each of (a)-(e) below: If the proposition is true, write TRUE and explain why it is true. If the proposition is false, write FALSE and give a counterexample. (Please do not use the abbreviations T and F, since in handwriting they are sometimes indistiguishable.)
- (a) If $f: \mathbb{C} \to \mathbb{C}$ is a function such that the functions $\operatorname{Re} f(x+iy)$ and $\operatorname{Im} f(x+iy)$ are differentiable (as functions $\mathbb{R}^2 \to \mathbb{R}$) at every point $(x,y) \in \mathbb{R}^2$, then f is an entire function.
- (b) If $\ell(z)$ is a branch of $\log z$ on a domain G, and $z_1, z_2 \in G$ satisfy $z_1/z_2 \in G$, then $\ell(z_1/z_2) = \ell(z_1) \ell(z_2)$.
 - (c) If γ is a closed curve contained in the set \mathbb{C}^* of nonzero complex numbers, then

$$\int_{\gamma} \frac{1}{z^2} \, dz = 0.$$

- (d) If a Laurent series centered at 0 converges at 4i, then it converges also at -1.
- (e) If R > 0, the domain $G_R := \{z \in \mathbb{C} : |z| > R\}$ is simply connected.
- (2) (6 pts.) Let a and b be distinct complex numbers. Find, in terms of a and b, all complex numbers c such that a, b, c are the vertices of a triangle with a 30° angle at a, a 60° angle at b, and a 90° angle at c.
- (3) (5 pts.) Sketch the set of $z \in \mathbb{C}$ such that $Re(e^z) < 0$.
- (4) (8 pts.) Does the series $\sum_{n=0}^{\infty} z^n/n!$ converge uniformly on \mathbb{C} ? (Justify your answer.)
- (5) (8 pts.) Let f(z) and g(z) be functions that are holomorphic on a neighborhood of 0, and assume that g(z) has a zero of order 2 at z = 0. Let $a_0 = f(0)$, $a_1 = f'(0)$, $b_2 = g''(0)$, $b_3 = g'''(0)$. Find a formula for the residue of f(z)/g(z) at z = 0 in terms of a_0, a_1, b_2, b_3 .
- (6) (8 pts.) Let $G = \{z \in \mathbb{C} : |z 2i| > 1\}$. Let γ_0 be the straight line path from 4 to -4, and let γ_1 be the path $\gamma_1(t) = 4e^{it}$ for $t \in [0, \pi]$. Are γ_0 and γ_1 (fixed-point) homotopic in G? Use complex integration to prove your answer.

(more problems on back)

(7) (12 pts. each) Evaluate the following definite integrals:

(a)
$$\int_0^{2\pi} \frac{1}{5 + 3\sin\theta} \, d\theta$$

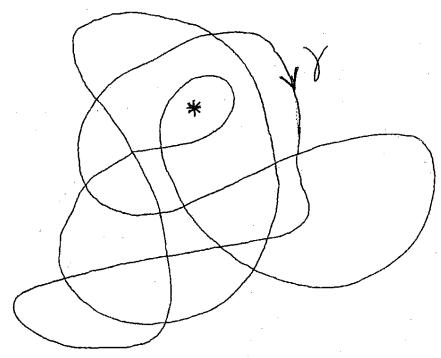
(b)
$$\int_{-\infty}^{\infty} \frac{1}{(z^2 + a^2)(z^2 + b^2)} dz$$
 where $0 < a < b$.

- (8) (10 pts.) Let f(z) be a function that is holomorphic in the region where 0 < |z| < 1. Assume that f(1/n) = 0 for all integers $n \ge 2$, but f(z) is not identically zero. Prove that f(z) has an essential singularity at z = 0.
- (9) (8 pts.) Let $n \geq 1$, and let a_0, a_1, \ldots, a_n be complex numbers such that $a_n \neq 0$. For $\theta \in \mathbb{R}$, define

$$f(\theta) = a_0 + a_1 e^{i\theta} + a_2 e^{2i\theta} + \dots + a_n e^{ni\theta}.$$

Prove that there exists $\theta \in \mathbb{R}$ such that $|f(\theta)| > |a_0|$.

(10) (3 pts.) Let γ be the closed curve illustrated below, and let c be the complex number marked by the *. What is $\operatorname{ind}_{\gamma}(c)$?



This is the end! At this point, you may want to look over this sheet to make sure you have not omitted any problems. In particular, note that problem 1 has five parts, and problem 7 has two parts. Check that your answers make sense! Please take this sheet with you as you leave.